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Roadmap

1. High-dimensional setting: why OLS breaks

2. Ridge regression: constraint vs penalty, geometry

3. Model selection: data splitting and J-fold CV

4. Bridge family ℓp: ridge, lasso, sparsity vs convexity

5. Elastic net: combines ridge + lasso

6. From discriminative to generative modeling

7. QDA / LDA / Naive Bayes / DLDA
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High Dimensional Data and

Regularization



High Dimensional Data

Definition

High dimensional data: “a lot of” features. More precisely, when the dimensionality

d is comparable to (or much larger than) the sample size n, we are in the

high-dimensional regime.

Regression notation

Y =

Y1
...

Yn

 ∈ Rn, X =

X11 · · · X1d
...

...

Xn1 · · · Xnd

 ∈ Rn×d .
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Why OLS Breaks When d > n

Question

What happens to

β̂OLS = (X⊤X)−1X⊤Y when d > n?

Key Idea (Non-invertibility)

When d > n, X⊤X is not invertible (rank at most n), so OLS is ill-defined.

Two common remedies

1. Two-step: reduce dimension first (e.g., PCA), then regress.

2. Single-step: regularize (e.g., ridge).
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Ridge Regression



Ridge Estimator: Primal vs Dual

Primal (constraint form)

β̂ t = argmin
∥β∥22≤t

∥Y − Xβ∥22.

Dual (penalty form)

β̂ λ = argmin
β∈Rd

∥Y − Xβ∥22 + λ∥β∥22.

Key Idea (Equivalence)

For each λ > 0, there is a one-to-one mapping t = t(λ) so that β̂ λ = β̂ t .
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Closed Form and Interpretation

Closed form

β̂ λ = (X⊤X+ λI )−1X⊤Y.

Why ridge always works

X⊤X+ λI is always invertible for λ > 0.

Extreme cases

• If t > ∥β̂OLS∥22 then λ = 0 (no shrinkage).

• If t = 0 then λ = ∞ (shrink everything to 0).
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Example: X⊤X = I

Computation

If X⊤X = I , then

β̂ λ = (I + λI )−1X⊤Y =
1

1 + λ
X⊤Y =

1

1 + λ
β̂OLS.

Key Idea (Shrinkage)

Ridge shrinks coefficients continuously toward 0 as λ increases.
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Geometry of Ridge

Contour lines

A contour line of a function is a curve along which the function has a constant value.

contor plot of

Interpretation

Ridge chooses the first intersection between least-squares contours and an ℓ2 ball.
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Model Selection



Model Selection via Data Splitting

Split data D into D1 (train) and D2 (validation), with sizes n1 and n2.

Candidate tuning parameters

Λ = {λ1, λ2, . . . , λK}.

Fit β̂λk on D1.

Data-splitting score

DS(k) = 1

n2

∑
i∈D2

(Yi − X⊤
i β̂λk )2.

Pick the λk with smallest DS(k).
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Pros / Cons of Data Splitting

Advantages

• Simple (conceptually + computationally).

• Good generalization performance in practice.

• Conditionally (on D1), DS(k) is an unbiased estimator of risk R(β̂λk ).

Disadvantage
• “Wastes” data: D2 is not used for training at all.
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J-Fold Cross Validation

Definition

Split D into J equal subsets D1, . . . ,DJ . For each fold j , train on D \ Dj and

validate on Dj .

CV score

For each λk compute DS j(k) and average:

CV(k) =
1

J

J∑
j=1

DS j(k).

Pick the λk minimizing CV(k).

Remark

After selecting λ, refit on the full dataset D.
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Bridge Family, Lasso, Elastic Net



Bridge Regression: ℓp Regularization

For x = (x1, . . . , xd)
⊤, define

∥x∥p =
( d∑

j=1

|xj |p
)1/p

(p ≥ 1).

Two observations

• If 1 ≤ p < ∞: ∥ · ∥p is a norm and {x : ∥x∥p ≤ t} is convex.

• If 0 < p < 1: ∥ · ∥p is not a norm and the constraint set is non-convex.
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Geometric Intuition: ℓp Balls

β1

β2

p = 0.5

β1

β2

p = 1

β1

β2

p = 2

Takeaway

As p decreases, the ℓp ball becomes “pointier” along coordinate axes ⇒ encourages

sparsity.
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Bridge Estimator Family

Definition (penalized form)

For 0 < p < ∞ and λ > 0,

β̂bridge = argmin
β∈Rd

∥Y − Xβ∥22 + λ∥β∥pp.

Special cases
• p = 2 ⇒ ridge regression.

• p = 1 ⇒ lasso (most important case).
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Lasso: Primal and Dual

Primal (constraint)

β̂ t = argmin
∥β∥1≤t

∥Y − Xβ∥22.

Dual (penalty)

β̂ λ = argmin
β∈Rd

∥Y − Xβ∥22 + λ∥β∥1.

Key Idea (Sparsity)

Lasso often yields many coefficients exactly equal to 0, enabling variable selection.
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Geometric Picture of Lasso

Interpretation

Because the ℓ1 ball has corners on coordinate axes, the optimum often hits an axis:

some β̂j = 0.
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Example: Lasso as Variable Selection

Setup

Suppose the true regression function is

f (X ) = β1X1 + · · ·+ βdXd , with β2 = 0.

Takeaway

With a suitable λ > 0, lasso can yield β̂λ
2 = 0 and thus select variables.

Remark

Larger λ typically produces a sparser solution.
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Elastic Net

Motivation
• Ridge: handles collinearity well, strongly convex, but not sparse.

• Lasso: sparse and convex, but can struggle with collinearity.

Definition

For λ > 0 and 0 ≤ α ≤ 1,

β̂Elastic = argmin
β∈Rd

∥Y − Xβ∥22 + λ
(
α∥β∥1 + (1− α)∥β∥22

)
.

Remark

α = 1 gives lasso; α = 0 gives ridge.

18/35



From Discriminative to Generative

Modeling



Discriminative vs Generative

By Bayes factorization,

p(y , x) = p(y | x) p(x).

Discriminative modeling

Model p(y | x) directly (e.g., logistic regression), ignore p(x).

Generative modeling

Model the joint mechanism via p(x | y) and p(y) (hence also p(x)), enabling

generation of new x .

Remark

If the LDA model is correct, LDA can be more statistically efficient.
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Generative Route to Classification via Bayes

We can write

P(Y = +1 | X = x) =
P(x | Y = +1)P(Y = +1)

P(x | Y = +1)P(Y = +1) + P(x | Y = −1)P(Y = −1)
.

Define

η
∆
= P(Y = +1), p+(x)

∆
= P(x | Y = +1), p−(x)

∆
= P(x | Y = −1).

Then

P(Y = +1 | X = x) =
p+(x)η

p+(x)η + p−(x)(1− η)
.

Key Idea (What to estimate)

To implement Bayes classification, estimate η, p+(x), and p−(x) from data.
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MLE for the Class Prior η

With i.i.d. data (Xi ,Yi )
n
i=1, let

n+ =
n∑

i=1

I(Yi = +1), n− = n − n+.

Log-likelihood terms involving η∑
i :Yi=+1

log η +
∑

i :Yi=−1

log(1− η).

MLE

η̂MLE =
n+
n
.
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Discriminant Analysis: QDA and

LDA



Quadratic Discriminant Analysis (QDA)

QDA (Gaussian class-conditional densities)

Assume

p+(x) = N (µ+,Σ+), p−(x) = N (µ−,Σ−).

Decision rule idea

Classify by comparing P(Y = +1 | X = x) and P(Y = −1 | X = x), equivalently

compare the log-likelihood ratio plus prior term.

Key Idea (Why “quadratic”?)

The boundary involves quadratic forms (x − µ±)
⊤Σ−1

± (x − µ±).
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QDA Decision Boundary (from your derivation)

Under QDA, P(Y = +1 | X = x) > P(Y = −1 | X = x) is equivalent to

1

2
log

|Σ−|
|Σ+|

+
1

2
(x − µ−)

⊤Σ−1
− (x − µ−)−

1

2
(x − µ+)

⊤Σ−1
+ (x − µ+) + log

η

1− η
> 0.

Define Mahalanobis distances

r−(x) =
√
(x − µ−)⊤Σ

−1
− (x − µ−), r+(x) =

√
(x − µ+)⊤Σ

−1
+ (x − µ+).

Bayes rule in QDA form

h∗(x) =

+1, 1
2 r

2
−(x)− 1

2 r
2
+(x) +

1
2 log

|Σ−|
|Σ+| + log η

1−η > 0,

−1, otherwise.
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QDA Parameter MLEs

Let n+ =
∑n

i=1 I(Yi = +1) and n− =
∑n

i=1 I(Yi = −1).

MLEs

µ̂MLE
+ =

1

n+

∑
i :Yi=+1

Xi , µ̂MLE
− =

1

n−

∑
i :Yi=−1

Xi ,

Σ̂MLE
+ =

1

n+

∑
i :Yi=+1

(Xi − µ̂+)(Xi − µ̂+)
⊤,

Σ̂MLE
− =

1

n−

∑
i :Yi=−1

(Xi − µ̂−)(Xi − µ̂−)
⊤.

Remark

(QDA has many parameters; this matters a lot in high dimension.)
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Linear Discriminant Analysis (LDA)

Definition

LDA is the special case of QDA with shared covariance: Σ+ = Σ− = Σ.

Consequence

The decision boundary becomes linear in x .
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LDA Boundary is Linear

Under Σ+ = Σ− = Σ, the QDA condition simplifies to

(µ+ − µ−)
⊤Σ−1x +

1

2
µ⊤
−Σ

−1µ− − 1

2
µ⊤
+Σ

−1µ+ + log
η

1− η
> 0.

Linear form

This is β⊤x + β0 > 0 with

β = (µ+ − µ−)
⊤Σ−1, β0 =

1

2
µ⊤
−Σ

−1µ− − 1

2
µ⊤
+Σ

−1µ+ + log
η

1− η
.
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LDA vs Linear Logistic Regression (Remark)

Similarity

Linear logistic regression models log-odds by a linear score:

log
P(Y = +1 | X = x)

P(Y = −1 | X = x)
= f (x), f ∈ {β⊤x + β0}.

LDA also implies a linear log-odds:

log
P(Y = +1 | X = x)

P(Y = −1 | X = x)
= β⊤x + β0.

Remark

When comparing model spaces, compare joint distributions rather than only

marginals.
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LDA Parameter MLEs

MLEs

µ̂MLE
+ =

1

n+

∑
i :Yi=+1

Xi , µ̂MLE
− =

1

n−

∑
i :Yi=−1

Xi ,

Σ̂MLE =
n+Σ̂+ + n−Σ̂−

n+ + n−
,

where

Σ̂+ =
1

n+

∑
i :Yi=+1

(Xi − µ̂+)(Xi − µ̂+)
⊤, Σ̂− =

1

n−

∑
i :Yi=−1

(Xi − µ̂−)(Xi − µ̂−)
⊤.
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Naive Bayes and DLDA in High

Dimension



Naive Bayes Regularization

Naive Bayes assumption (class-conditional independence)

For x = (x1, . . . , xd)
⊤,

P(x | Y = +1) =
d∏

j=1

P(xj | Y = +1), P(x | Y = −1) =
d∏

j=1

P(xj | Y = −1).

Key Idea (Why it helps)

Reduces the number of parameters dramatically by turning a d-dimensional density

into d univariate models.
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Naive Bayes Log-Odds Decomposition

Under naive Bayes,

log
P(Y = +1 | X = x)

P(Y = −1 | X = x)
=

d∑
j=1

log
P(xj | Y = +1)

P(xj | Y = −1)
+ log

η

1− η
.

Additive score

Define fj(xj) = log
P(xj |Y=+1)
P(xj |Y=−1) . Then the classifier is based on

d∑
j=1

fj(xj) + log
η

1− η
.
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Example: Diagonal LDA (DLDA)

DLDA model

Assume LDA but with diagonal covariance

Σ = diag(σ2
1, . . . , σ

2
d).

Equivalently, coordinates are conditionally independent given the class.

Coordinate-wise Gaussians

For each j ,

Xj | Y = +1 ∼ N (µ+j , σ
2
j ), Xj | Y = −1 ∼ N (µ−j , σ

2
j ).

31/35



DLDA MLEs (from your notes)

Means

µ̂MLE
+ =

1

n+

∑
i :Yi=+1

Xi , µ̂MLE
− =

1

n−

∑
i :Yi=−1

Xi .

Diagonal covariance

Σ̂MLE = diag(σ̂2
1, . . . , σ̂

2
d), σ̂2

j =
n+Ŝ

2
+j + n−Ŝ

2
−j

n+ + n−
,

where

Ŝ2
+j =

1

n+

∑
i :Yi=+1

(Xij − µ̂+j)
2, Ŝ2

−j =
1

n−

∑
i :Yi=−1

(Xij − µ̂−j)
2.
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If Features Are Categorical

Discrete generative models

If Xj is categorical, we can model P(Xj | Y ) using a discrete distribution (e.g.,

Bernoulli for binary, multinomial for multi-category).

Key Idea

Naive Bayes naturally supports mixing continuous and categorical features by

choosing appropriate univariate models for each coordinate.
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Number of Free Parameters (Model Complexity)

Number of Free Paremters

• Full QDA (Σ+,Σ−, µ+, µ−, η):

d(d + 1) + 2d + 1

(since each symmetric Σ± has d(d + 1)/2 parameters).

• Full LDA (Σ, µ+, µ−, η):
d(d + 1)

2
+ 2d + 1

• DLDA (σ2
1, . . . , σ

2
d , µ+, µ−, η):

3d + 1.

Key Idea (High-dimensional lesson)

Regularization (e.g., diagonal/naive Bayes) reduces parameters and can improve

performance when d is large.
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Wrap-up



Wrap-Up

• When d > n, OLS breaks: X⊤X is not invertible.

• Ridge fixes this via ℓ2 regularization; closed form exists for λ > 0.

• Model selection: data splitting and J-fold cross-validation.

• Bridge family connects ridge (p = 2) and lasso (p = 1).

• Elastic net balances sparsity and stability under collinearity.

• Generative modeling estimates p(x | y) and η; QDA/LDA are Gaussian instances.

• Naive Bayes/DLDA reduce parameter count dramatically in high dimension.
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