

From Predictive to Generative

Qiang Sun

January 2026

Roadmap

1. High-dimensional setting: why OLS breaks
2. Ridge regression: constraint vs penalty, geometry
3. Model selection: data splitting and J -fold CV
4. Bridge family ℓ_p : ridge, lasso, sparsity vs convexity
5. Elastic net: combines ridge + lasso
6. From discriminative to generative modeling
7. QDA / LDA / Naive Bayes / DLDA

High Dimensional Data and Regularization

High Dimensional Data

Definition

High dimensional data: “a lot of” features. More precisely, when the dimensionality d is comparable to (or much larger than) the sample size n , we are in the high-dimensional regime.

Regression notation

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n, \quad \mathbf{X} = \begin{bmatrix} X_{11} & \cdots & X_{1d} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{nd} \end{bmatrix} \in \mathbb{R}^{n \times d}.$$

Why OLS Breaks When $d > n$

Question

What happens to

$$\hat{\beta}^{\text{OLS}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y} \quad \text{when } d > n?$$

Key Idea (Non-invertibility)

When $d > n$, $\mathbf{X}^{\top} \mathbf{X}$ is not invertible (rank at most n), so OLS is ill-defined.

Two common remedies

1. **Two-step:** reduce dimension first (e.g., PCA), then regress.
2. **Single-step:** regularize (e.g., ridge).

Ridge Regression

Ridge Estimator: Primal vs Dual

Primal (constraint form)

$$\hat{\beta}^t = \arg \min_{\|\beta\|_2^2 \leq t} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2.$$

Dual (penalty form)

$$\hat{\beta}^\lambda = \arg \min_{\beta \in \mathbb{R}^d} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_2^2.$$

Key Idea (Equivalence)

For each $\lambda > 0$, there is a one-to-one mapping $t = t(\lambda)$ so that $\hat{\beta}^\lambda = \hat{\beta}^t$.

Closed Form and Interpretation

Closed form

$$\hat{\beta}^\lambda = (\mathbf{X}^\top \mathbf{X} + \lambda I)^{-1} \mathbf{X}^\top \mathbf{Y}.$$

Why ridge always works

$\mathbf{X}^\top \mathbf{X} + \lambda I$ is always invertible for $\lambda > 0$.

Extreme cases

- If $t > \|\hat{\beta}^{\text{OLS}}\|_2^2$ then $\lambda = 0$ (no shrinkage).
- If $t = 0$ then $\lambda = \infty$ (shrink everything to 0).

Example: $\mathbf{X}^\top \mathbf{X} = I$

Computation

If $\mathbf{X}^\top \mathbf{X} = I$, then

$$\hat{\beta}^\lambda = (I + \lambda I)^{-1} \mathbf{X}^\top \mathbf{Y} = \frac{1}{1 + \lambda} \mathbf{X}^\top \mathbf{Y} = \frac{1}{1 + \lambda} \hat{\beta}^{\text{OLS}}.$$

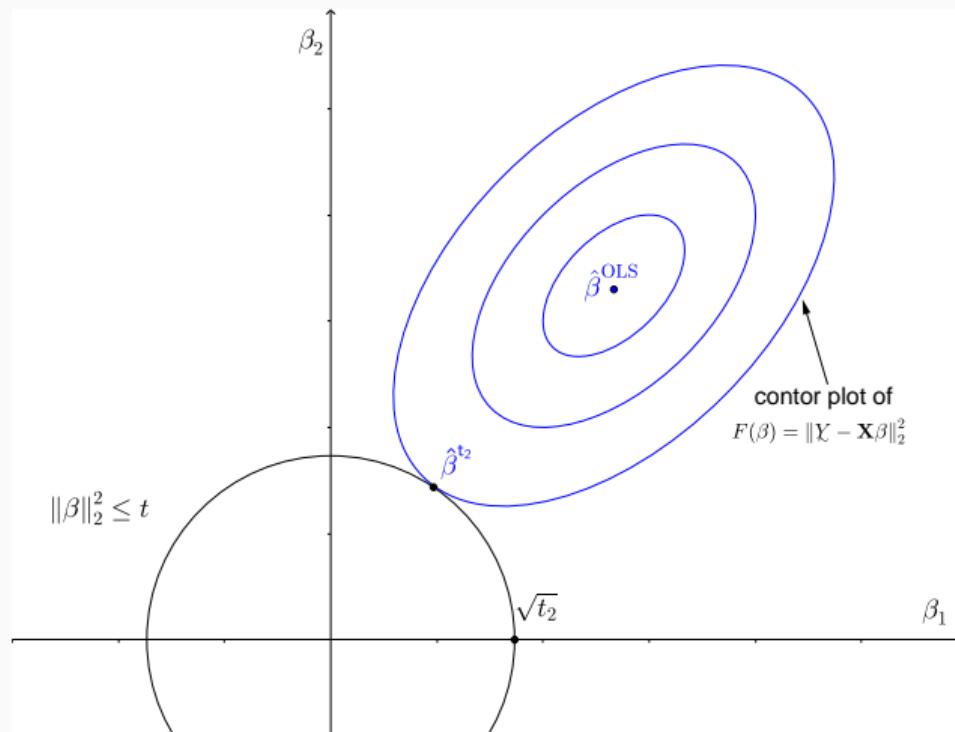
Key Idea (Shrinkage)

Ridge shrinks coefficients continuously toward 0 as λ increases.

Geometry of Ridge

Contour lines

A contour line of a function is a curve along which the function has a constant value.



Model Selection

Model Selection via Data Splitting

Split data \mathcal{D} into \mathcal{D}_1 (train) and \mathcal{D}_2 (validation), with sizes n_1 and n_2 .

Candidate tuning parameters

$$\Lambda = \{\lambda_1, \lambda_2, \dots, \lambda_K\}.$$

Fit $\hat{\beta}^{\lambda_k}$ on \mathcal{D}_1 .

Data-splitting score

$$\mathcal{DS}(k) = \frac{1}{n_2} \sum_{i \in \mathcal{D}_2} (Y_i - X_i^\top \hat{\beta}^{\lambda_k})^2.$$

Pick the λ_k with smallest $\mathcal{DS}(k)$.

Pros / Cons of Data Splitting

Advantages

- Simple (conceptually + computationally).
- Good generalization performance in practice.
- Conditionally (on \mathcal{D}_1), $\mathcal{DS}(k)$ is an unbiased estimator of risk $R(\hat{\beta}^{\lambda_k})$.

Disadvantage

- “Wastes” data: \mathcal{D}_2 is not used for training at all.

J -Fold Cross Validation

Definition

Split \mathcal{D} into J equal subsets $\mathcal{D}_1, \dots, \mathcal{D}_J$. For each fold j , train on $\mathcal{D} \setminus \mathcal{D}_j$ and validate on \mathcal{D}_j .

CV score

For each λ_k compute $\mathcal{DS}_j(k)$ and average:

$$\text{CV}(k) = \frac{1}{J} \sum_{j=1}^J \mathcal{DS}_j(k).$$

Pick the λ_k minimizing $\text{CV}(k)$.

Remark

After selecting λ , refit on the full dataset \mathcal{D} .

Bridge Family, Lasso, Elastic Net

Bridge Regression: ℓ_p Regularization

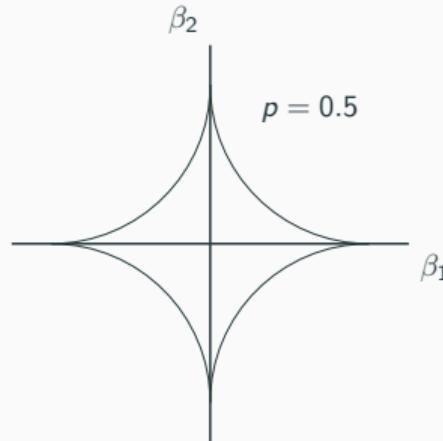
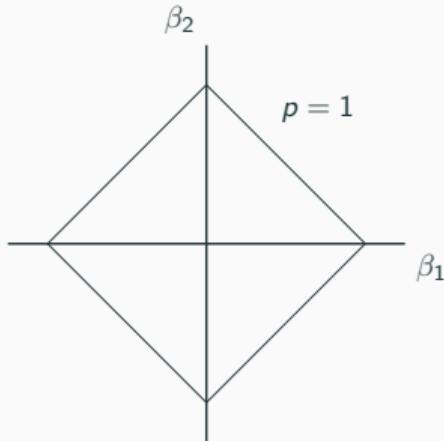
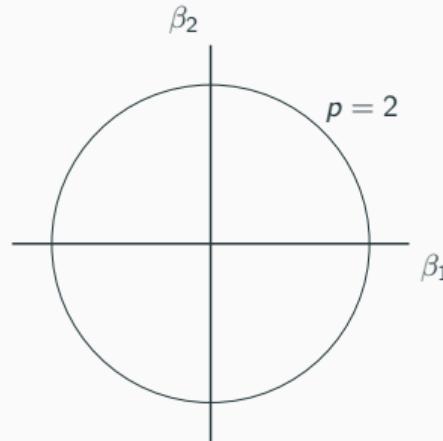
For $x = (x_1, \dots, x_d)^\top$, define

$$\|x\|_p = \left(\sum_{j=1}^d |x_j|^p \right)^{1/p} \quad (p \geq 1).$$

Two observations

- If $1 \leq p < \infty$: $\|\cdot\|_p$ is a norm and $\{x : \|x\|_p \leq t\}$ is convex.
- If $0 < p < 1$: $\|\cdot\|_p$ is not a norm and the constraint set is non-convex.

Geometric Intuition: ℓ_p Balls



Takeaway

As p decreases, the ℓ_p ball becomes “pointier” along coordinate axes \Rightarrow encourages sparsity.

Bridge Estimator Family

Definition (penalized form)

For $0 < p < \infty$ and $\lambda > 0$,

$$\hat{\beta}^{\text{bridge}} = \arg \min_{\beta \in \mathbb{R}^d} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_p^p.$$

Special cases

- $p = 2 \Rightarrow$ ridge regression.
- $p = 1 \Rightarrow$ lasso (most important case).

Lasso: Primal and Dual

Primal (constraint)

$$\hat{\beta}^t = \arg \min_{\|\beta\|_1 \leq t} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2.$$

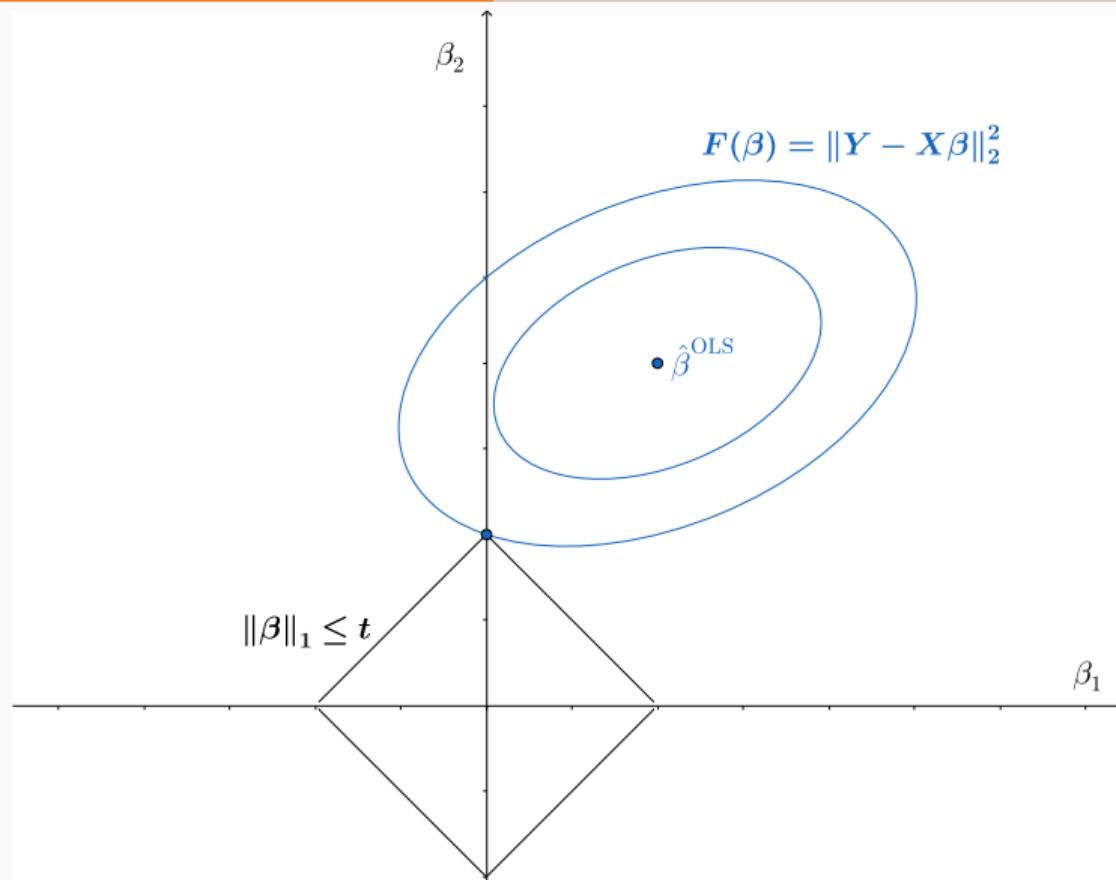
Dual (penalty)

$$\hat{\beta}^\lambda = \arg \min_{\beta \in \mathbb{R}^d} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \|\beta\|_1.$$

Key Idea (Sparsity)

Lasso often yields many coefficients exactly equal to 0, enabling variable selection.

Geometric Picture of Lasso



Example: Lasso as Variable Selection

Setup

Suppose the true regression function is

$$f(X) = \beta_1 X_1 + \cdots + \beta_d X_d, \quad \text{with } \beta_2 = 0.$$

Takeaway

With a suitable $\lambda > 0$, lasso can yield $\hat{\beta}_2^\lambda = 0$ and thus select variables.

Remark

Larger λ typically produces a sparser solution.

Elastic Net

Motivation

- Ridge: handles collinearity well, strongly convex, but not sparse.
- Lasso: sparse and convex, but can struggle with collinearity.

Definition

For $\lambda > 0$ and $0 \leq \alpha \leq 1$,

$$\hat{\beta}^{\text{Elastic}} = \arg \min_{\beta \in \mathbb{R}^d} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 + \lambda \left(\alpha \|\beta\|_1 + (1 - \alpha) \|\beta\|_2^2 \right).$$

Remark

$\alpha = 1$ gives lasso; $\alpha = 0$ gives ridge.

From Discriminative to Generative Modeling

Discriminative vs Generative

By Bayes factorization,

$$p(y, x) = p(y | x) p(x).$$

Discriminative modeling

Model $p(y | x)$ directly (e.g., logistic regression), ignore $p(x)$.

Generative modeling

Model the joint mechanism via $p(x | y)$ and $p(y)$ (hence also $p(x)$), enabling generation of new x .

Remark

If the LDA model is correct, LDA can be more statistically efficient.

Generative Route to Classification via Bayes

We can write

$$\mathbb{P}(Y = +1 \mid X = x) = \frac{\mathbb{P}(x \mid Y = +1)\mathbb{P}(Y = +1)}{\mathbb{P}(x \mid Y = +1)\mathbb{P}(Y = +1) + \mathbb{P}(x \mid Y = -1)\mathbb{P}(Y = -1)}.$$

Define

$$\eta \stackrel{\Delta}{=} \mathbb{P}(Y = +1), \quad p_+(x) \stackrel{\Delta}{=} \mathbb{P}(x \mid Y = +1), \quad p_-(x) \stackrel{\Delta}{=} \mathbb{P}(x \mid Y = -1).$$

Then

$$\mathbb{P}(Y = +1 \mid X = x) = \frac{p_+(x)\eta}{p_+(x)\eta + p_-(x)(1 - \eta)}.$$

Key Idea (What to estimate)

To implement Bayes classification, estimate η , $p_+(x)$, and $p_-(x)$ from data.

MLE for the Class Prior η

With i.i.d. data $(X_i, Y_i)_{i=1}^n$, let

$$n_+ = \sum_{i=1}^n \mathbb{I}(Y_i = +1), \quad n_- = n - n_+.$$

Log-likelihood terms involving η

$$\sum_{i: Y_i = +1} \log \eta + \sum_{i: Y_i = -1} \log(1 - \eta).$$

MLE

$$\hat{\eta}^{\text{MLE}} = \frac{n_+}{n}.$$

Discriminant Analysis: QDA and LDA

Quadratic Discriminant Analysis (QDA)

QDA (Gaussian class-conditional densities)

Assume

$$p_+(x) = \mathcal{N}(\mu_+, \Sigma_+), \quad p_-(x) = \mathcal{N}(\mu_-, \Sigma_-).$$

Decision rule idea

Classify by comparing $\mathbb{P}(Y = +1 | X = x)$ and $\mathbb{P}(Y = -1 | X = x)$, equivalently compare the log-likelihood ratio plus prior term.

Key Idea (Why “quadratic”?)

The boundary involves quadratic forms $(x - \mu_{\pm})^\top \Sigma_{\pm}^{-1} (x - \mu_{\pm})$.

QDA Decision Boundary (from your derivation)

Under QDA, $\mathbb{P}(Y = +1 | X = x) > \mathbb{P}(Y = -1 | X = x)$ is equivalent to

$$\frac{1}{2} \log \frac{|\Sigma_-|}{|\Sigma_+|} + \frac{1}{2}(x - \mu_-)^\top \Sigma_-^{-1} (x - \mu_-) - \frac{1}{2}(x - \mu_+)^{\top} \Sigma_+^{-1} (x - \mu_+) + \log \frac{\eta}{1 - \eta} > 0.$$

Define Mahalanobis distances

$$r_-(x) = \sqrt{(x - \mu_-)^\top \Sigma_-^{-1} (x - \mu_-)}, \quad r_+(x) = \sqrt{(x - \mu_+)^{\top} \Sigma_+^{-1} (x - \mu_+)}.$$

Bayes rule in QDA form

$$h^*(x) = \begin{cases} +1, & \frac{1}{2}r_-^2(x) - \frac{1}{2}r_+^2(x) + \frac{1}{2} \log \frac{|\Sigma_-|}{|\Sigma_+|} + \log \frac{\eta}{1 - \eta} > 0, \\ -1, & \text{otherwise.} \end{cases}$$

QDA Parameter MLEs

Let $n_+ = \sum_{i=1}^n \mathbb{I}(Y_i = +1)$ and $n_- = \sum_{i=1}^n \mathbb{I}(Y_i = -1)$.

MLEs

$$\hat{\mu}_+^{\text{MLE}} = \frac{1}{n_+} \sum_{i: Y_i = +1} X_i, \quad \hat{\mu}_-^{\text{MLE}} = \frac{1}{n_-} \sum_{i: Y_i = -1} X_i,$$

$$\hat{\Sigma}_+^{\text{MLE}} = \frac{1}{n_+} \sum_{i: Y_i = +1} (X_i - \hat{\mu}_+)(X_i - \hat{\mu}_+)^{\top},$$

$$\hat{\Sigma}_-^{\text{MLE}} = \frac{1}{n_-} \sum_{i: Y_i = -1} (X_i - \hat{\mu}_-)(X_i - \hat{\mu}_-)^{\top}.$$

Remark

(QDA has many parameters; this matters a lot in high dimension.)

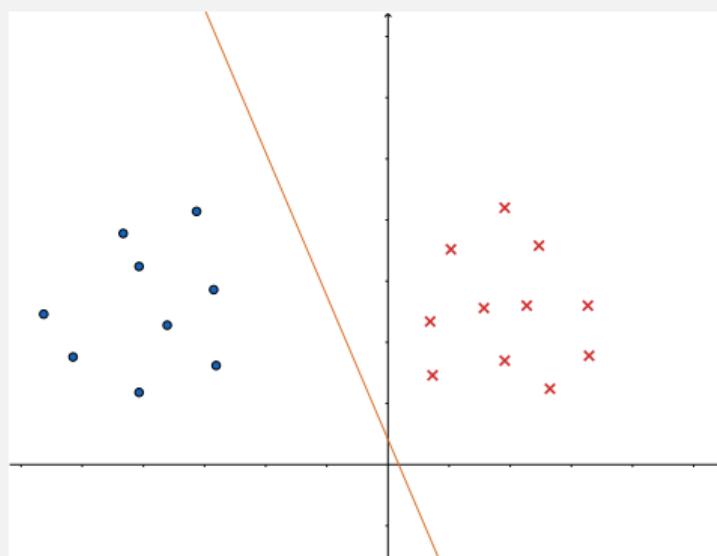
Linear Discriminant Analysis (LDA)

Definition

LDA is the special case of QDA with shared covariance: $\Sigma_+ = \Sigma_- = \Sigma$.

Consequence

The decision boundary becomes linear in x .



LDA Boundary is Linear

Under $\Sigma_+ = \Sigma_- = \Sigma$, the QDA condition simplifies to

$$(\mu_+ - \mu_-)^\top \Sigma^{-1} x + \frac{1}{2} \mu_-^\top \Sigma^{-1} \mu_- - \frac{1}{2} \mu_+^\top \Sigma^{-1} \mu_+ + \log \frac{\eta}{1-\eta} > 0.$$

Linear form

This is $\beta^\top x + \beta_0 > 0$ with

$$\beta = (\mu_+ - \mu_-)^\top \Sigma^{-1}, \quad \beta_0 = \frac{1}{2} \mu_-^\top \Sigma^{-1} \mu_- - \frac{1}{2} \mu_+^\top \Sigma^{-1} \mu_+ + \log \frac{\eta}{1-\eta}.$$

LDA vs Linear Logistic Regression (Remark)

Similarity

Linear logistic regression models log-odds by a linear score:

$$\log \frac{\mathbb{P}(Y = +1 \mid X = x)}{\mathbb{P}(Y = -1 \mid X = x)} = f(x), \quad f \in \{\beta^\top x + \beta_0\}.$$

LDA also implies a linear log-odds:

$$\log \frac{\mathbb{P}(Y = +1 \mid X = x)}{\mathbb{P}(Y = -1 \mid X = x)} = \beta^\top x + \beta_0.$$

Remark

When comparing model spaces, compare *joint* distributions rather than only marginals.

MLEs

$$\begin{aligned}\hat{\mu}_+^{\text{MLE}} &= \frac{1}{n_+} \sum_{i: Y_i=+1} X_i, & \hat{\mu}_-^{\text{MLE}} &= \frac{1}{n_-} \sum_{i: Y_i=-1} X_i, \\ \hat{\Sigma}^{\text{MLE}} &= \frac{n_+ \hat{\Sigma}_+ + n_- \hat{\Sigma}_-}{n_+ + n_-},\end{aligned}$$

where

$$\hat{\Sigma}_+ = \frac{1}{n_+} \sum_{i: Y_i=+1} (X_i - \hat{\mu}_+)(X_i - \hat{\mu}_+)^{\top}, \quad \hat{\Sigma}_- = \frac{1}{n_-} \sum_{i: Y_i=-1} (X_i - \hat{\mu}_-)(X_i - \hat{\mu}_-)^{\top}.$$

Naive Bayes and DLDA in High Dimension

Naive Bayes Regularization

Naive Bayes assumption (class-conditional independence)

For $x = (x_1, \dots, x_d)^\top$,

$$\mathbb{P}(x \mid Y = +1) = \prod_{j=1}^d \mathbb{P}(x_j \mid Y = +1), \quad \mathbb{P}(x \mid Y = -1) = \prod_{j=1}^d \mathbb{P}(x_j \mid Y = -1).$$

Key Idea (Why it helps)

Reduces the number of parameters dramatically by turning a d -dimensional density into d univariate models.

Naive Bayes Log-Odds Decomposition

Under naive Bayes,

$$\log \frac{\mathbb{P}(Y = +1 \mid X = x)}{\mathbb{P}(Y = -1 \mid X = x)} = \sum_{j=1}^d \log \frac{\mathbb{P}(x_j \mid Y = +1)}{\mathbb{P}(x_j \mid Y = -1)} + \log \frac{\eta}{1 - \eta}.$$

Additive score

Define $f_j(x_j) = \log \frac{\mathbb{P}(x_j \mid Y = +1)}{\mathbb{P}(x_j \mid Y = -1)}$. Then the classifier is based on

$$\sum_{j=1}^d f_j(x_j) + \log \frac{\eta}{1 - \eta}.$$

Example: Diagonal LDA (DLDA)

DLDA model

Assume LDA but with diagonal covariance

$$\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2).$$

Equivalently, coordinates are conditionally independent given the class.

Coordinate-wise Gaussians

For each j ,

$$X_j \mid Y = +1 \sim \mathcal{N}(\mu_{+j}, \sigma_j^2), \quad X_j \mid Y = -1 \sim \mathcal{N}(\mu_{-j}, \sigma_j^2).$$

DLDA MLEs (from your notes)

Means

$$\hat{\mu}_+^{\text{MLE}} = \frac{1}{n_+} \sum_{i: Y_i = +1} X_i, \quad \hat{\mu}_-^{\text{MLE}} = \frac{1}{n_-} \sum_{i: Y_i = -1} X_i.$$

Diagonal covariance

$$\hat{\Sigma}^{\text{MLE}} = \text{diag}(\hat{\sigma}_1^2, \dots, \hat{\sigma}_d^2), \quad \hat{\sigma}_j^2 = \frac{n_+ \hat{S}_{+j}^2 + n_- \hat{S}_{-j}^2}{n_+ + n_-},$$

where

$$\hat{S}_{+j}^2 = \frac{1}{n_+} \sum_{i: Y_i = +1} (X_{ij} - \hat{\mu}_{+j})^2, \quad \hat{S}_{-j}^2 = \frac{1}{n_-} \sum_{i: Y_i = -1} (X_{ij} - \hat{\mu}_{-j})^2.$$

If Features Are Categorical

Discrete generative models

If X_j is categorical, we can model $\mathbb{P}(X_j | Y)$ using a discrete distribution (e.g., Bernoulli for binary, multinomial for multi-category).

Key Idea

Naive Bayes naturally supports mixing continuous and categorical features by choosing appropriate univariate models for each coordinate.

Number of Free Parameters (Model Complexity)

Number of Free Parameters

- **Full QDA** ($\Sigma_+, \Sigma_-, \mu_+, \mu_-, \eta$):

$$d(d+1) + 2d + 1$$

(since each symmetric Σ_{\pm} has $d(d+1)/2$ parameters).

- **Full LDA** ($\Sigma, \mu_+, \mu_-, \eta$):

$$\frac{d(d+1)}{2} + 2d + 1$$

- **DLDA** ($\sigma_1^2, \dots, \sigma_d^2, \mu_+, \mu_-, \eta$):

$$3d + 1.$$

Key Idea (High-dimensional lesson)

Regularization (e.g., diagonal/naive Bayes) reduces parameters and can improve performance when d is large.

Wrap-up

Wrap-Up

- When $d > n$, OLS breaks: $\mathbf{X}^\top \mathbf{X}$ is not invertible.
- Ridge fixes this via ℓ_2 regularization; closed form exists for $\lambda > 0$.
- Model selection: data splitting and J -fold cross-validation.
- Bridge family connects ridge ($p = 2$) and lasso ($p = 1$).
- Elastic net balances sparsity and stability under collinearity.
- Generative modeling estimates $p(x | y)$ and η ; QDA/LDA are Gaussian instances.
- Naive Bayes/DLDA reduce parameter count dramatically in high dimension.