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High-dimensional setting: why OLS breaks

Ridge regression: constraint vs penalty, geometry
Model selection: data splitting and J-fold CV
Bridge family £,: ridge, lasso, sparsity vs convexity
Elastic net: combines ridge + lasso

From discriminative to generative modeling

QDA / LDA / Naive Bayes / DLDA
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High Dimensional Data and
Regularization



High Dimensional Data

Definition

High dimensional data: “a lot of” features. More precisely, when the dimensionality
d is comparable to (or much larger than) the sample size n, we are in the
high-dimensional regime.

Regression notation

Y1 X1 - Xud
Y=|:|€eR" X=|: L | eR™
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Why OLS Breaks When d > n

What happens to

BOLS — (XTX)"IXTY when d > n?

Key Idea (Non-invertibility)

When d > n, XTX is not invertible (rank at most n), so OLS is ill-defined.

Two common remedies

1. Two-step: reduce dimension first (e.g., PCA), then regress.

2. Single-step: regularize (e.g., ridge).
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Ridge Regression



Ridge Estimator: Primal vs Dual

Primal (constraint form)

Bt =argmin Y — XB|3.
IBl5<t

Dual (penalty form)

B> = argmin ||[Y — X33 + A|I8]13.
BeRA

Key Idea (Equivalence)

For each A > 0, there is a one-to-one mapping t = t(\) so that EA = Bt.
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Closed Form and Interpretation

Closed form

B =(XTX+AN)IXTY.

Why ridge always works

XTX + M is always invertible for A > 0.

Extreme cases

o If t > |]B\OLS]]§ then A = 0 (no shrinkage).

e If t =0 then A\ = oo (shrink everything to 0).
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Example: X'X =/

Computation

If XTX =/, then

. 1 1 =
A —~1y T T oLS
=({+X)" XY= XY= .

b (I+ A1) 1+ A 1+)\B

Key ldea (Shrinkage)

Ridge shrinks coefficients continuously toward 0 as A increases.
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Geometry of Ridge

Contour lines

A contour line of a function is a curve along which the function has a constant value.

Ba

2
Bz <t

contor plot of
F(3) =Y - X5l

B

/ 8/35



Model Selection



Model Selection via Data Splitting

Split data D into D; (train) and D (validation), with sizes ny and ny.

Candidate tuning parameters

A= {1, )., Ak}

1

Fit B)‘k on D;.

Data-splitting score

DS(K) = = > (Y= X BM)2
ny

i€Dy
Pick the Ax with smallest DS(k).
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Pros / Cons of Data Splitting

Advantages

e Simple (conceptually + computationally).

e Good generalization performance in practice.

e Conditionally (on D1), DS(k) is an unbiased estimator of risk R(B)‘k).

Disadvantage
e “Wastes” data: D, is not used for training at all.
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J-Fold Cross Validation

Definition
Split D into J equal subsets Di,...,D,. For each fold j, train on D\ D; and
validate on D;.

CV score

For each A\ compute DS;(k) and average:

J
CV(k) = % > DS;(k).

Jj=1

Pick the A, minimizing CV (k).

After selecting A, refit on the full dataset D.
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Bridge Family, Lasso, Elastic Net




Bridge Regression: /, Regularization

For x = (x1,...,xq) ", define

d 1/p
o = (X bsl?) ™ (e 1)

Two observations
e If1<p<oo:|-|pisanormand {x:|x|, <t} is convex.

e If0 < p<1:|-]pisnot anorm and the constraint set is non-convex.
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Geometric Intuition: 7, Balls

b1 b1 f1

Takeaway
As p decreases, the £, ball becomes “pointier” along coordinate axes = encourages
sparsity.
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Bridge Estimator Family

Definition (penalized form)

For 0 < p<ooand A >0,
Dbridge __ . Y — X 2 A P
B7ES = arg min || Bliz + AllBIIE.

BERM

Special cases
e p=2 = ridge regression.

e p=1 = lasso (most important case).
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Lasso: Primal and Dual

Primal (constraint)

Bt =argmin Y — Xp|3.
18] <t

Dual (penalty)
B)‘ =argmin ||Y — Xﬁ”% + AllBll1-

BERY

Key Idea (Sparsity)

Lasso often yields many coefficients exactly equal to 0, enabling variable selection.
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Geometric Picture of Lasso

Ba

F(B) =Y — XBll3

8l <t
B
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Example: Lasso as Variable Selection

Suppose the true regression function is

f(X) = X1+ -+ BgXg, with B =0.

With a suitable A > 0, lasso can yield ng = 0 and thus select variables.

Larger X typically produces a sparser solution.
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Elastic Net

e Ridge: handles collinearity well, strongly convex, but not sparse.

e Lasso: sparse and convex, but can struggle with collinearity.

ForA>0and 0<a<1,

FEestc = argmin [I¥ — X813 + A(allBll + (1 - a)IB1B)-
BeR

a =1 gives lasso; a = 0 gives ridge.
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From Discriminative to Generative
Modeling




Discriminative vs Generative

By Bayes factorization,
ply,x) = ply | x) p(x).

Discriminative modeling
Model p(y | x) directly (e.g., logistic regression), ignore p(x).

Generative modeling
Model the joint mechanism via p(x | y) and p(y) (hence also p(x)), enabling

generation of new x.

If the LDA model is correct, LDA can be more statistically efficient.
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Generative Route to Classification via Bayes

We can write
P(x| Y =41)P(Y = +1)
(x|Y=4)P(Y =+1)+P(x| Y =-1)P(Y =-1)

P(Y =+1|X=x) =

Define

NER(Y =+1),  p () SP(x|Y=+1), p_(x)EP(x|Y=-1).

Then
p+(x)n

pr(X)n + p—(x)(1 —n)’

Key Idea (What to estimate)

To implement Bayes classification, estimate 7, p1(x), and p_(x) from data.

P(Y =+1| X =x) =
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MLE for the Class Prior 7

With i.i.d. data (X;, Y;)_,, let

n
n+:Z]I(Y,-:+1), n_=n-—ny.
i=1

Log-likelihood terms involving 7

Z logn + Z log(1 — 7).

e\ =il iiYi=—1

MLE
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Discriminant Analysis: QDA and
LDA




Quadratic Discriminant Analysis (QDA)

QDA (Gaussian class-conditional densities)

Assume

Decision rule idea

Classify by comparing P(Y = +1 | X = x) and P(Y = —1 | X = x), equivalently
compare the log-likelihood ratio plus prior term.

Key Idea (Why “quadratic”?)

The boundary involves quadratic forms (x — p+) T3 (x — pus).
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QDA Decision Boundary (from your derivation)

Under QDA, P(Y =+1 | X =x) > P(Y = —1 | X = x) is equivalent to

1 > 1 _ 1 _ n
g 1=+ (= 1) T — 1) = 20— ) TEA(x — )+ log <

> 0.
2 T2 2 -

Define Mahalanobis distances

() = (x =) TE = ), () = 3 (x = ) TER M x = ).

Bayes rule in QDA form

>
h*(x) = +1, %rE(X)—%ri(x)—f—%logH_HOg%>07

—1, otherwise.
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QDA Parameter MLEs

Let ny =Y I(Yi=+1)and n_ =37, I(Y; = —1).

N N 1
MLE Z X, GMLE _ - Z X,

iiYi=+1 iiYi=—1

~ 1 . .
EME = — N (X)X — )T,

~ 1 . .
TMLE _ — S Xi—a )X —-no)"

(QDA has many parameters; this matters a lot in high dimension.)
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Linear Discriminant Analysis (LDA)

LDA is the special case of QDA with shared covariance: ¥, =% _=%.

Consequence

The decision boundary becomes linear in x.
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LDA Boundary is Linear

Under ¥, =¥ _ =¥, the QDA condition simplifies to

_ 1 _ 1 B
(g —p ) T I+ Zp . — f,uIZ Ly +log > 0.

U
2 2 1-17

Linear form

This is 87 x + o > 0 with

) 1+ 1
B=(ny—p)' =7 Po=SulT Mo = SpiT gy + log

n
1-7n
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LDA vs Linear Logistic Regression (Remark)

Linear logistic regression models log-odds by a linear score:

P(Y = +1| X = x)
P(Y = —1| X = x)

log =f(x), fe {ﬂTx—i—ﬂo}.

LDA also implies a linear log-odds:

P(Y = +1| X = x)
P(Y = —1| X = x)

When comparing model spaces, compare joint distributions rather than only

= B8"x+ fo.

log

marginals.
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LDA Parameter MLEs

. 1 ~ 1
e = - > X, Hks — - > X,
tivi=t1 iYi=—1
sME_ My a2
ny +n_

)

a 1 R - o 1 —~ —~
X, = o Z (Xi— g )(Xi—pag)', o= o Z (Xi — A= )(Xi —1-) "
iiY; T iYi=—1
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Naive Bayes and DLDA in High
Dimension




Naive Bayes Regularization

Naive Bayes assumption (class-conditional independence)

For x = (x1,...,xq) ",
d d
P(x | Y =+1) =[Py | Y =+1), P(x|Y=-1)=]]P(|Y=-1).
j=1 j=1

Key Idea (Why it helps)
Reduces the number of parameters dramatically by turning a d-dimensional density
into d univariate models.
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Naive Bayes Log-Odds Decomposition

Under naive Bayes,

Define fi(x;) = Iogw Then the classifier is based on

d
Z (%) +|og

J=1
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Example: Diagonal LDA (DLDA)

DLDA model

Assume LDA but with diagonal covariance

Y = diag(03,...,09).

Equivalently, coordinates are conditionally independent given the class.

Coordinate-wise Gaussians

For each j,

X |Y=+1 NN(M—HanZ)’ XY =-1 NN(N—J'7UJZ)~
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DLDA MLEs (from your notes)

Diagonal covariance

SMLE — diag(52,...,52), 81-2: n n
+ —
where 1 1
= o e ~ 32
Sij:T Z (Xij — B4)%, 571':”* Z (Xij — 1—j)"
T ivi=t1 T hYi=—1
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If Features Are Categorical

Discrete generative models

If Xj is categorical, we can model P(X; | Y') using a discrete distribution (e.g.,
Bernoulli for binary, multinomial for multi-category).

Key Ildea
Naive Bayes naturally supports mixing continuous and categorical features by

choosing appropriate univariate models for each coordinate.
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Number of Free Parameters (Model Complexity)

Number of Free Paremters

e Full QDA (Z+’zfnu+nu*an):
d(d+1)+2d +1

(since each symmetric X4 has d(d + 1)/2 parameters).

e Full LDA (X, pig, pi—, m):
d(d+1)

2 1
5 +2d +
e DLDA (U%,...,Uﬁ,u+,u_,77):

3d + 1.

Key Idea (High-dimensional lesson)

Regularization (e.g., diagonal/naive Bayes) reduces parameters and can improve 34/35

performance when d is large.



Wrap-up




Wrap-Up

e When d > n, OLS breaks: X "X is not invertible.

e Ridge fixes this via ¢ regularization; closed form exists for A > 0.

e Model selection: data splitting and J-fold cross-validation.

e Bridge family connects ridge (p = 2) and lasso (p = 1).

e Elastic net balances sparsity and stability under collinearity.

e Generative modeling estimates p(x | y) and 7; QDA/LDA are Gaussian instances.

e Naive Bayes/DLDA reduce parameter count dramatically in high dimension.
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