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Roadmap

1. Supervised learning: prediction + explanation

2. Regression: loss, risk, ERM, overfitting, regularization

3. OLS: solution and model-based interpretation

4. Classification: Bayes rule, decision boundary, logistic regression

5. Other losses: logistic, hinge (SVM), 0-1

6. (Optional extension) feature engineering, neural nets, high-dimensional + ridge

2/33



Supervised Learning



Supervised Learning

Goal

Predict an unknown response Y from features X using labeled data.

• Regression: Y ∈ R (continuous)

• Classification: Y ∈ {1, 2, . . . ,K} (categorical)

Key Idea (Two tasks)

Supervised learning usually combines prediction and (often) explainability/variable

selection.
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Generic Workflow (Supervised Learning)

1

(Y1, X1), …(Y1, Xn ) ̂f X

Training Data Construct a 
prediction function

̂Y = ̂f(X)

New Data Predict

Caption

A generic workflow for supervised learning (data → model training → evaluation →
deployment).
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Example: Image Classification (Cats vs Dogs)

Setup

We observe labeled images (Xi ,Yi ) where Yi ∈ {cat, dog}.
We train a classifier f̂ so that for a new image X , we predict Ŷ = f̂ (X ).

Key Idea (Generalization)

The key question is how well f̂ predicts on new data, not just on training data.
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Two Goals of Supervised Learning

1. Prediction: Given a new X , predict Y via Ŷ = f̂ (X ).

2. Explainability (variable selection): Find a small subset of features X1, . . . ,Xd

most related to Y .

Comment

Prediction is the main goal of ML; inference/explanation is central in statistics.
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Regression Analysis



Regression Setup: Population vs Sample

Population level

(Y ,X ) ∼ PY ,X , Y ∈ R, X ∈ Rd .

Sample level

We observe i.i.d. samples

(Y1,X1), . . . , (Yn,Xn)
i.i.d.∼ PY ,X .

Let Y = (Y1, . . . ,Yn)
⊤ and X = [Xij ] ∈ Rn×d .

Notation

(Yi ,Xi ) is random; (yi , xi ) is the observed realization.
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Inference vs Prediction (Key Contrast)

Example: X ∼ N (θ, 1) with unknown θ

We observe X1, . . . ,Xn
i.i.d.∼ N (θ, 1).

• Inference/statistics: infer population quantities (e.g., θ)

• point estimate θ̂n, confidence intervals, hypothesis testing

• Prediction/learning: predict a new draw Xn+1 based on X1:n

• focus: generalization performance
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What is Regression?

Intuition

Regression summarizes the relationship between a response Y and predictors X .

Given data (Yi ,Xi )
n
i=1, we want a prediction function f so that f (X ) is “close” to Y .

Key Idea (Main question)

If f (X ) and Y are random, how do we measure their closeness?
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Loss Functions and Risk

Let X be the feature space and Y be the label space.

Loss function

A loss ℓ : Y × Y → R+ measures the cost of predicting Ŷ when the truth is Y .

Expected risk (population risk)

R(f )
∆
= E(Y ,X )∼P

[
ℓ(f (X ),Y )

]
.
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Examples of Loss Functions (Regression)

Common choices

1. ℓ2 (OLS): ℓ(f (X ),Y ) = |f (X )− Y |2, R(f ) = E|f (X )− Y |2.

2. ℓ1 (LAD): ℓ(f (X ),Y ) = |f (X )− Y |, R(f ) = E|f (X )− Y |.

Why ℓ2 is popular

Mathematically simple, computationally convenient, locally quadratic, and links to

Gaussian MLE.
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A Fundamental Theorem for ℓ2 Loss

Theorem

Let

f ∗ = argmin
f

E
[
(Y − f (X ))2

]
.

Then

f ∗(x) = E[Y | X = x ].

Key Idea (Regression function)

The conditional mean g(x)
∆
= E[Y | X = x ] is the target of ℓ2 regression.
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Proof Sketch (Orthogonality Trick)

Let f̄ (X ) = E[Y | X ]. Then:

E(Y − f (X ))2 = E(Y − f̄ (X ))2 + E(f̄ (X )− f (X ))2

because the cross term vanishes:

E[(Y − f̄ (X ))(f̄ (X )− f (X ))] = 0.

Interpretation

The first term is irreducible noise; the second is approximation error minimized at

f = f̄ .
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From Population Risk to Empirical Risk

Population risk uses the unknown PY ,X , so we minimize the empirical risk:

R̂(f )
∆
=

1

n

n∑
i=1

(Yi − f (Xi ))
2, f̂ = argmin

f
R̂(f ).

A trivial (bad) minimizer

f̂ (x) =

Yi , x = Xi

anything, x ̸= X1, . . . ,Xn.
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Overfitting and Regularization

Overfitting

A model is too flexible and begins to fit noise instead of signal.

Key Idea (Regularization)

Control model complexity by restricting the hypothesis class or adding

penalties/constraints.

Examples of hypothesis classes F

• Linear: F = {f (x) = β⊤x}

• Polynomial: F = {f (x) = poly(x)}

• Smooth nonparametric: F =
{
f :

∫
(f ′(x))2dx < ∞

}
• Neural nets: F = {f : f is a residual network}
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Ordinary Least Squares (OLS)

OLS regression

Given (Yi ,Xi )
n
i=1 with design matrix X ∈ Rn×d ,

β̂ = argmin
β∈Rd

∥Y − Xβ∥22.

Closed form (when X⊤X invertible)

β̂ = (X⊤X)−1X⊤Y.
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Model-Based Interpretation of OLS

Consider the generative model

Y = β⊤X + ϵ, E[ϵ | X ] = 0, ϵ ∼ N (0, σ2).

Key result

Under Gaussian noise, the MLE of β equals the OLS solution:

β̂MLE = argmin
β

n∑
i=1

(Yi − β⊤Xi )
2.

Key Idea (Why model-based?)

It tells you when an estimator is optimal, enables confidence intervals/p-values, and

yields a generative story for the data.
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Classification



Classification Basics

Classification

Categorical response Y ∈ {C1, . . . ,CK} (often Y ∈ {1, . . . ,K}).

• Binary classification: K = 2, often Y ∈ {−1,+1}.

• Multiclass: K > 2 (can reduce via one-vs-one / one-vs-rest).

Goal: learn a mapping h : X → {−1,+1} so that h(X ) matches Y .
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0–1 Loss and Expected Risk

For Y ∈ {−1,+1}, the 0–1 loss is

ℓ(Y , Ŷ ) = I(Y ̸= Ŷ ).

Expected risk

R(h) = E[ℓ(Y , h(X ))] = P(Y ̸= h(X )).

(Your notes also express ℓ2 loss as |Y − h(X )|2 = 4I(Y ̸= h(X )).)
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Bayes Classifier

Bayes rule

h∗ = argmin
h

R(h) = argmin
h

P(Y ̸= h(X )).

Theorem (Bayes classifier)

Let r(x)
∆
= P(Y = +1 | X = x). Then

h∗(x) =

+1, r(x) > 1
2 ,

−1, otherwise.

Key Idea (Core task in classification)

Model/estimate the conditional probability r(x) = P(Y = +1 | X = x).
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Decision Boundary

Decision boundary

Given r(x) = P(Y = +1 | X = x), define

D(r) = {x : r(x) = 1
2}.
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Decision Boundary

• Points with r(x) > 1
2 fall in the positive region.

• Points with r(x) < 1
2 fall in the negative region.

• Linear vs nonlinear boundary depends on the form of r(x) (or its score function).

+1
-1

+1
-1
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Logistic Modeling

Logistic model

Model the conditional probability by a score function f (x):

P(Y = +1 | X = x) =
1

1 + e−f (x)
, P(Y = −1 | X = x) =

1

1 + ef (x)
.

Equivalently,

P(Y = y | X = x) =
1

1 + e−yf (x)
, y ∈ {−1,+1}.

Margin

The quantity yf (x) is the margin (we want it large).
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Logistic vs Probit

Probit model

P(Y = +1 | X = x) = Φ(f (x)),

where Φ is the CDF of N (0, 1).
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Logistic Regression as MLE

We treat pX (x) as a nuisance parameter and focus on pf (y | x):

pf (y | x) = 1

1 + e−yf (x)
.

Log-likelihood (up to constants in f )

ℓn(f ) =
n∑

i=1

log pf (Yi | Xi ) = −
n∑

i=1

log
(
1 + e−Yi f (Xi )

)
.

Key Idea (MLE objective)

f̂ = argmax
f

ℓn(f ) ⇐⇒ f̂ = argmin
f

n∑
i=1

log
(
1 + e−Yi f (Xi )

)
.
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Overfitting in Logistic Regression

If we do not constrain f , a trivial (bad) solution can separate the training data:

f̂ (x) =


+∞, Xi = x , Yi = +1,

−∞, Xi = x , Yi = −1,

arbitrary, elsewhere.

Key Idea (Regularize the function class)

Prevent overfitting by restricting f ∈ F (linear, smooth, RKHS, neural net, etc.).

Examples

• Linear logistic regression: f (x) = β0 + β⊤x .

• Nonparametric logistic regression: f continuous with
∫
[f ′′(x)]2 < ∞.
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Risk Minimization View: Logistic Loss

Logistic loss

ℓlogistic(y , f (x)) = log
(
1 + e−yf (x)

)
.

Logistic risk

R(f ) = E
[
log(1 + e−Yf (X ))

]
.

Log-odds interpretation

Under the logistic model,

f (x) = log
P(Y = +1 | X = x)

P(Y = −1 | X = x)
.
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Other Loss Functions for Classification

• ℓ2 surrogate (as in notes):
n∑

i=1

(1− Yiβ
⊤Xi )

2

• 0–1 loss:

I
(
Y f (X ) < 0

)
• Hinge loss + SVM:

min
β

n∑
i=1

(1− Yiβ
⊤Xi )+ + λ∥β∥22

Summary

Likelihood view motivates logistic loss; ERM view allows many losses (logistic, hinge,

squared, 0–1).
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Loss Functions

g(u)
-2-2 -1-1 11 22 33

u

00

....

0-1 Loss0-1 Loss

Logistic LossLogistic Loss

Hinge LossHinge Loss

L2 - LossL2 - Loss

log2log2

Figure 1: Four losses: logistic, ℓ2, 0–1, and hinge. 29/33



Optional Extensions



Linear Regression Can Be Very Flexible

Linear regression becomes flexible through feature engineering:

1. Transformations: log(X1),
√
X1, X 2

1

2. Interactions: XjXk

3. Basis expansion: f (X ) =
∑d

j=1 βjhj(X )

4. Indicator features: I(Xj ∈ A)
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Categorical Variables and Dummy Coding

Categorical variable

A variable that takes values in a finite set of categories.

Dummy coding

Gender:

I(X = male) =

1, X = male

0, X = female

For K categories, use K − 1 dummy variables (no ordering assumed).
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Neural Networks

Neural computation unit / perceptron

f (X ) = σ(β⊤X + β0)

Common activations: identity, ReLU, sigmoid.

Neural network hypothesis

A family F of functions obtained by composing such units.

Key Idea (Parametric vs nonparametric)

A neural net with finitely many parameters is a parametric model.
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Wrap-up



Wrap-Up

• Supervised learning: regression vs classification; prediction vs inference

• Regression: loss → risk → ERM; overfitting → regularization

• OLS: closed form and Gaussian MLE interpretation

• Classification: 0–1 risk; Bayes rule; decision boundary

• Logistic regression: likelihood and ERM (logistic loss); alternatives (hinge/SVM)

• Extensions: feature engineering, neural nets
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