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Supervised learning: prediction + explanation

Regression: loss, risk, ERM, overfitting, regularization

OLS: solution and model-based interpretation

Classification: Bayes rule, decision boundary, logistic regression
Other losses: logistic, hinge (SVM), 0-1

(Optional extension) feature engineering, neural nets, high-dimensional + ridge
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Supervised Learning



Supervised Learning

Predict an unknown response Y from features X using labeled data.

e Regression: Y € R (continuous)

e Classification: Y € {1,2,..., K} (categorical)

Key Idea (Two tasks)

Supervised learning usually combines prediction and (often) explainability /variable

selection.
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Generic Workflow (Supervised Learning)

Training Data Cons_tn:lct a . New Data Predict
prediction function

X X)) = f el X e P=fX)

A generic workflow for supervised learning (data — model training — evaluation —
deployment).
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Example: Image Classification (Cats vs Dogs)

We observe labeled images (Xj, Y;) where Y; € {cat, dog}.
We train a classifier f so that for a new image X, we predict Y = f(X).

Key Idea (Generalization)

The key question is how well f predicts on new data, not just on training data.
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Two Goals of Supervised Learning

~

1. Prediction: Given a new X, predict Y via Y :?(X).

2. Explainability (variable selection): Find a small subset of features Xi,..., Xy
most related to Y.

Prediction is the main goal of ML; inference/explanation is central in statistics.
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Regression Analysis




Regression Setup: Population vs Sample

Population level

(Y, X) ~ Py x, YeR, X eRY,

Sample level

We observe i.i.d. samples
(Y1, X1), s (Yo, Xa) = Py x.

Let Y = (Y4,...,Y,)T and X = [X;] € R4

(Yi, Xi) is random; (y;, ;) is the observed realization.
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Inference vs Prediction (Key Contrast)

Example: X ~ N(6,1) with unknown 6
We observe X1, ..., X, = (6,1).

¢ Inference/statistics: infer population quantities (e.g., 6)

e point estimate 0,,, confidence intervals, hypothesis testing

e Prediction/learning: predict a new draw X, ; based on Xi.,

e focus: generalization performance
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What is Regression?

Regression summarizes the relationship between a response Y and predictors X.

Given data (Y}, Xj)"_;, we want a prediction function f so that f(X) is “close” to Y.

Key Idea (Main question)

If £(X) and Y are random, how do we measure their closeness?
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Loss Functions and Risk

Let X be the feature space and ) be the label space.

Loss function

Aloss £ :Y x Y — RT measures the cost of predicting Y when the truth is Y.

Expected risk (population risk)

R(F) £ E(y xyp [L(F(X), Y)].
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Examples of Loss Functions (Regression)

Common choices

1. £y (OLS): £(f(X),Y)=|f(X)—Y|?, R(f)=E|f(X)-Y*

2. 41 (LAD): £(f(X),Y)=|f(X)— Y|, R(f)=E|f(X)-Y]|.

Why /5 is popular

Mathematically simple, computationally convenient, locally quadratic, and links to
Gaussian MLE.
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A Fundamental Theorem for ¢, Loss

Let

*= argfminE[(Y - f(X))2].

Then
*(x) =E[Y | X = x].

Key ldea (Regression function)

The conditional mean g(x) £ E[Y | X = x] is the target of ¢, regression.
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Proof Sketch (Orthogonality Trick)

Let f(X) =E[Y | X]. Then:
E(Y — f(X))? = E(Y — £(X))* + E(f(X) — f(X))?

because the cross term vanishes:

E[(Y - F(X))(F(X) - f(X))] =0.

Interpretation

The first term is irreducible noise; the second is approximation error minimized at
F=7
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From Population Risk to Empirical Risk

Population risk uses the unknown Py x, so we minimize the empirical risk:

~ 1 < . R
R(f)é;Z(W—f(X;))2, f:argfmin R(f).
i=1

A trivial (bad) minimizer

Yi x=X;
anything, x # Xi,...,X,.
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Overfitting and Regularization

Overfitting

A model is too flexible and begins to fit noise instead of signal.

Key ldea (Regularization)

Control model complexity by restricting the hypothesis class or adding
penalties/constraints.

Examples of hypothesis classes F
e Linear: F = {f(x)=p3"x}
e Polynomial: F = {f(x) = poly(x)}
e Smooth nonparametric: F = {f : [(f'(x))?dx < oo}

e Neural nets: F = {f : f is a residual network}
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Ordinary Least Squares (OLS)

OLS regression

Given (Y;, X;)"_; with design matrix X € R™*,

B = argmin |Y — X53.
BERY

Closed form (when XX invertible)

B=(X"X)"1xTY.
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Model-Based Interpretation of OLS

Consider the generative model

Y=8"X+e, Ele|X]=0, e~N(0,0%).

Key result

Under Gaussian noise, the MLE of 5 equals the OLS solution:

BMLE = arg min Z(Y, - BTX)%
B iz

Key Idea (Why model-based?)

It tells you when an estimator is optimal, enables confidence intervals/p-values, and
yields a generative story for the data.
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Classification




Classification Basics

Classification

Categorical response Y € {Cy, ..., Ck} (often Y € {1,...,K}).

e Binary classification: K = 2, often Y € {—1,+1}.

e Multiclass: K > 2 (can reduce via one-vs-one / one-vs-rest).

Goal: learn a mapping h: X — {—1,+1} so that h(X) matches Y.
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0-1 Loss and Expected Risk

For Y € {—1,+1}, the 0-1 loss is

0y, Y)=1Y #Y).

R(h) = E[€(Y, h(X))] = B(Y # h(X)).
(Your notes also express /5 loss as |Y — h(X)|? = 41(Y # h(X)).)
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Bayes Classifier

Bayes rule

h* = argmin R(h) = argmin P(Y # h(X)).
h h

Theorem (Bayes classifier)

Let r(x) 2 P(Y = +1| X = x). Then

1, = L
h*(X) = + r(X) 2

—1, otherwise.

Key Idea (Core task in classification)

Model/estimate the conditional probability r(x) = P(Y = +1 | X = x). e



Decision Boundary

Decision boundary

Given r(x) =P(Y = 41| X = x), define
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Decision Boundary

e Points with r(x) > 3 fall in the positive region.
e Points with r(x) < % fall in the negative region.

e Linear vs nonlinear boundary depends on the form of r(x) (or its score function).

+1 +1
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Logistic Modeling

Logistic model

Model the conditional probability by a score function f(x):

1 1
BY=HlIX=x)=1rcmy PFV="11X=9=1"Fy
Equivalently,
1
PY =y |X=X)= 1 ¥ € {141}

The quantity yf(x) is the margin (we want it large).

23/33



Logistic vs Probit

Probit model

P(Y = +1| X = x) = (f(x)),

where ® is the CDF of N(0,1).

/

—
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Logistic Regression as MLE

We treat px(x) as a nuisance parameter and focus on pr(y | x):
1
1+ e ¥’

Log-likelihood (up to constants in f)

0n(f) = Zlogpf(y | X;) = Zlog (14 e~ Vif(XD),
i=1

Key Idea (MLE objective)

?:argmaxf,,(f) <— /f\-:argmiang(l_‘_e—Yif(Xi))'
f i=1

pely | x) =
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Overfitting in Logistic Regression

If we do not constrain f, a trivial (bad) solution can separate the training data:
+OO, Xf:X7 \/I:—i_l?
f)=q-00,  Xj=x Yi=-1,

arbitrary, elsewhere.

Key Idea (Regularize the function class)

Prevent overfitting by restricting f € F (linear, smooth, RKHS, neural net, etc.).

e Linear logistic regression: f(x) = 8o+ ' x.

o Nonparametric logistic regression: f continuous with [[f”(x)]? < cc.
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Risk Minimization View: Logistic Loss

Logistic loss

glogistiC(y’ f(X)) = log (1 + e—yf(x))_

Logistic risk

R(f) = E[log(1 + e~ YX))].

Log-odds interpretation

Under the logistic model,
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Other Loss Functions for Classification

e /5 surrogate (as in notes):
n

> (1-YiBTX)
i=1
e (0-1 loss:
I(Y f(X)<0)
e Hinge loss + SVM:

mﬁin Z(l — YiBT X))+ + AlBII3
i=1

Likelihood view motivates logistic loss; ERM view allows many losses (logistic, hinge,
squared, 0-1).
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Loss Functions

12 - Loss U
gistic Loss'
Hing& Los:
0-1 Loss log2
2 1 o 1 2 3

Figure 1: Four losses: logistic, ¢, 0-1, and hinge. 29/33



Optional Extensions




Linear Regression Can Be Very Flexible

Linear regression becomes flexible through feature engineering:

1. Transformations: log(X1), v X1, X?

2. Interactions:  X;Xj

w

. Basis expansion: f(X) = 27:1 Bjhj(X)

4. Indicator features: I(X; € A)
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Categorical Variables and Dummy Coding

Categorical variable

A variable that takes values in a finite set of categories.

Dummy coding

Gender:
1, X =male

I(X = male) =
0, X = female

For K categories, use K — 1 dummy variables (no ordering assumed).

31/33



Neural Networks

Neural computation unit / perceptron

F(X)=0o(8"X + fo)

Common activations: identity, ReLU, sigmoid.

Neural network hypothesis

A family F of functions obtained by composing such units.

Key ldea (Parametric vs nonparametric)

A neural net with finitely many parameters is a parametric model.
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Wrap-up




Wrap-Up

Supervised learning: regression vs classification; prediction vs inference

Regression: loss — risk — ERM; overfitting — regularization

OLS: closed form and Gaussian MLE interpretation

Classification: 0-1 risk; Bayes rule; decision boundary

Logistic regression: likelihood and ERM (logistic loss); alternatives (hinge/SVM)

Extensions: feature engineering, neural nets
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