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Welcome

• Welcome to STAD80: Analysis of Big Data (ABD).

• This is a topics course: content evolves from year to year.

• This year we focus on three pillars:

1. Fundamentals: statistical principles and models, a little bit of predictive learning

2. Optimization

3. Generative modeling and learning
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Roadmap for Today

1. GenAI: from prediction to generation; why big data & compute matter

2. Generative modeling as sampling (unconditional and conditional)

3. Fundamentals: distributions, models, estimators

4. Maximum likelihood estimation (MLE) and its role in generative modeling
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Overview: GenAI, Big Data,

Compute



From Prediction to Generation

• Classical ML: prediction (classification/regression)

• Modern GenAI: generation of new content conditioned on prompts

• images, text, audio, video, molecular structures

• Distinction:

• Predictive models estimate an unknown target from observed data.

• Generative models produce realistic samples resembling draws from a complex data

distribution.

Key Idea ( GenAI )

The ability to generate, not just predict, is a defining feature of the current GenAI

revolution.
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Generative AI: A new generation of AI systems
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Why GenAI is Linked to Big Data and Computation

• Generative modeling approximates extremely complex distributions over

high-dimensional objects.

• Doing so reliably typically demands:

1. Massive training datasets (multimodal, curated, filtered)

2. Large-scale optimization (stochastic methods, many iterations)

• Computational enablers:

• GPUs/TPUs and distributed systems

• scalable stochastic optimization algorithms

• data pipelines (storage, preprocessing, streaming)
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Generative Modeling as Sampling



Modalities: Representing Data Numerically

We begin by thinking about different data types (modalities) and how to represent

them numerically.

1. Image: H ×W pixels with 3 color channels

Z ∈ RH×W×3

2. Video: a sequence of T frames

Z ∈ RT×H×W×3

3. Molecular structure: N atoms with 3D coordinates

Z = (Z 1, . . . ,ZN) ∈ R3×N , Z i ∈ R3
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High-Dimensional Viewpoint

After choosing a representation, we can flatten the object into a vector:

Z ∈ Rd ,

where d may be extremely large.

Key Idea ( Representation )

Once data are represented as vectors, modeling and generation become questions

about probability distributions on Rd .

Examples of dimensionality

Images: d = H ·W · 3; Videos: d = T · H ·W · 3.
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Generation as Sampling: Intuition

Suppose we want to generate an image of a dog.

• There is no single “best” dog image.

• There are many acceptable images, varying in realism and diversity.

Statistical viewpoint

Replace the vague question “How good is this sample?” by

“How likely is it under the data distribution?”
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The Data Distribution

We posit an (unknown) data distribution and denote it by pdata.

• Higher probability: objects that look like valid data

• Lower probability: implausible / out-of-distribution objects

Key Idea ( Generation as Sampling )

Generating an object Z is modeled as sampling from the (unknown) data distribution:

Z ∼ pdata.
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Datasets as Finite Samples

We do not observe pdata directly; we observe a dataset.

Key Idea ( Dataset )

A dataset consists of a finite collection of samples

Z1, . . . ,Zn
i.i.d.∼ pdata.

• Images: large collections of photos (public/curated datasets)

• Videos: curated repositories

• Molecules/proteins: experimental databases (e.g., PDB)
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What is a Generative Model?

A generative model aims to approximate pdata well enough to produce realistic

samples.

Two core tasks

1. Learning: fit a model distribution using Z1:n.

2. Sampling: draw new synthetic samples that resemble the data.

Key Idea ( Core objective )

Learn a distribution whose samples match the dataset in relevant ways.
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Conditional Generation

In many applications, we want generation conditioned on some input y .

Key Idea ( Conditional Generation )

Conditional generation is modeled as sampling

Z ∼ pdata( · | y),

where y is a conditioning variable (label, prompt, side information).

Practical goal

A single model that can condition on many possible values of y (e.g., many text

prompts).
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Unconditional vs Conditional Generation

Unconditional generation

We generate objects without any side information:

Z ∼ pdata.

Conditional generation

We generate objects given some input Y = y (prompt/label/context):

Z ∼ pdata( · | Y = y).

Key Idea ( Two viewpoints )

Unconditional models learn the overall distribution of the dataset; conditional models

learn how the distribution changes with y .
14/30



Examples of Conditioning Variables Y

• Class-conditional images: Y ∈ {cat, dog, car, . . . }.

• Text-to-image: Y = a text prompt describing desired content/style.

• Inpainting / editing: Y = partially observed image + mask.

• Molecules/proteins: Y = desired properties (binding affinity, solubility,

constraints).

Interpretation

Conditioning tells the model what kind of sample to generate.
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How Datasets Support Conditional Generation

For conditional generation, we typically observe paired data:

(Z1,Y1), . . . , (Zn,Yn)
i.i.d.∼ pdata(z , y).

Two equivalent targets

• Learn the joint distribution pdata(z , y), then sample Z | Y = y .

• Learn the conditional distribution pdata(z | y) directly.

Key Idea ( Unconditional as a special case )

Unconditional generation corresponds to sampling from the marginal:

pdata(z) =

∫
pdata(z , y) dy .
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Sampling: What Does It Mean Operationally?

Once a model is trained (e.g., pθ), sampling means producing a new random draw.

Unconditional sampling

Sample Z ∼ pθ.

Produces a diverse set of samples reflecting the overall training distribution.

Conditional sampling

Fix y , then sample Z ∼ pθ( · | y).

Produces diverse samples consistent with the same condition y .

Key Idea ( Diversity vs control )

Unconditional: diversity with less control. Conditional: diversity given control.
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Fundamentals: Notation and

Models



Random Samples and Notation

Convention

Capital letters denote random variables; lower-case letters denote observed values.

Random sample

X1, . . . ,Xn are a random sample if

X1, . . . ,Xn
i.i.d.∼ p(x).

We write X1:n = (X1, . . . ,Xn) and x1:n = (x1, . . . , xn).
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CDF and PDF

CDF

F (x) = P(X ≤ x), x ∈ R.

PDF (when it exists)

If F is differentiable, then

p(x) =
d

dx
F (x).

Remark

For discrete X , p(x) typically denotes a probability mass function (pmf).
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Statistical Models

Definition

A statistical model is a family of distributions indexed by Θ:

P = {pθ : θ ∈ Θ}.

Parametric vs Nonparametric

• Parametric: Θ is finite-dimensional (e.g., Θ ⊆ Rd).

• Nonparametric: no finite-dimensional parameterization.

Gaussian family (parametric)

P =

{
pµ,σ2(x) =

1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
: µ ∈ R, σ2 > 0

}
.

The parameter θ = (µ, σ2) is 2-dimensional (finite-dimensional). 20/30



Examples: Parametric and Nonparametric Models

Gaussian family (parametric)

P =

{
pµ,σ2(x) =

1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
: µ ∈ R, σ2 > 0

}
.

Why parametric? The parameter θ = (µ, σ2) is 2-dimensional (finite-dimensional).

All PDFs (nonparametric)

P = {all PDFs on R}.

Why nonparametric? There is no finite-dimensional parameter θ that can index all

PDFs.

Key Idea ( Course plan )

We start with parametric models (cleaner theory), then return to nonparametric

models later.
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Estimators and MLE



Estimators: Key Definitions

Point estimation

Given X1, . . . ,Xn
i.i.d.∼ pθ(x), point estimation produces a single value intended to

approximate θ.

Estimator

θ̂n = g(X1, . . . ,Xn),

where g : Rn → Θ is measurable.

Consistency

θ̂n is consistent if θ̂n
P−→ θ as n → ∞.
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Bias and Unbiasedness

Bias

Bias(θ̂n) = E[θ̂n]− θ.

Unbiased estimator

θ̂n is unbiased if Bias(θ̂n) = 0.

Key Idea ( Important distinction )

Unbiasedness and consistency are different properties, and neither implies the other.
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Example: Unbiased vs Consistent

Normal mean example

If X1, . . . ,Xn
i.i.d.∼ N(µ, 1):

• µ̂(1) = X1 is unbiased but not consistent.

• µ̂
(2)
n = 1

n

∑n
i=1 Xi is unbiased and consistent.

• µ̂
(3)
n = 1

n+1

∑n
i=1 Xi is biased but consistent.
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Likelihood and Log-Likelihood

Likelihood (single observation)

L(θ; x) = pθ(x).

Joint likelihood (i.i.d. data)

Ln(θ; x1:n) =
n∏

i=1

pθ(xi ).

Log-likelihood

ℓn(θ; x1:n) =
n∑

i=1

log pθ(xi ).
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Maximum Likelihood Estimator (MLE)

Definition

θ̂n ∈ argmax
θ∈Θ

Ln(θ; x1:n) ⇐⇒ θ̂n ∈ argmax
θ∈Θ

ℓn(θ; x1:n).

Key Idea ( Computation )

Working with ℓn is numerically more stable and turns products into sums.
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MLE Example: Gaussian

Gaussian distribution

If X1, . . . ,Xn
i.i.d.∼ N(µ, σ2), then

µ̂n = X̄n, σ̂2
n =

1

n

n∑
i=1

(Xi − X̄n)
2.

Note

The MLE for σ2 uses 1/n (the unbiased sample variance uses 1/(n − 1)).
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Asymptotics of the MLE (Informal)

Asymptotic normality

√
n (θ̂n − θ)

D−→ N
(
0, I (θ)−1

)
.

Scalar Fisher information

I (θ) = Eθ

[(
∂

∂θ
log pθ(X )

)2
]
= −Eθ

[
∂2

∂θ2
log pθ(X )

]
.

Cramér–Rao type bound (informal)

For unbiased θ̃n,

Var(θ̃n) ≥
1

n I (θ)
.
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Connecting MLE to Generative Modeling

• In generative modeling, the target is the (unknown) pdata.

• In a parametric generative model, posit {pθ : θ ∈ Θ} and estimate θ via MLE:

θ̂ ∈ argmax
θ∈Θ

n∑
i=1

log pθ(zi ).

• After learning θ̂, we can sample:

Z ∼ pθ̂.

Key Idea ( Big picture )

Modeling + Optimization + Compute ⇒ scalable learning and sampling.
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Wrap-Up



Wrap-Up

• GenAI: generating new content ≈ sampling from a learned distribution.

• Big data + compute make modern GenAI feasible at scale.

• Foundations today:

• representations and modalities; pdata; datasets as i.i.d. samples

• models (parametric/nonparametric) + examples

• estimators: bias, consistency; MLE and Gaussian example

• Next: predictive modeling
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