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Welcome

e Welcome to STAD80: Analysis of Big Data (ABD).

e This is a topics course: content evolves from year to year.
e This year we focus on three pillars:

1. Fundamentals: statistical principles and models, a little bit of predictive learning
2. Optimization

3. Generative modeling and learning
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Roadmap for Today

GenAl: from prediction to generation; why big data & compute matter
Generative modeling as sampling (unconditional and conditional)

Fundamentals: distributions, models, estimators

> ® N =

Maximum likelihood estimation (MLE) and its role in generative modeling
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Overview: GenAl, Big Data,
Compute



From Prediction to Generation

e Classical ML: prediction (classification/regression)

e Modern GenAl: generation of new content conditioned on prompts

e images, text, audio, video, molecular structures

e Distinction:

e Predictive models estimate an unknown target from observed data.

e Generative models produce realistic samples resembling draws from a complex data
distribution.

Key Idea ( GenAl )

The ability to generate, not just predict, is a defining feature of the current GenAl
revolution.
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Generative Al: A new generation of Al systems

Artistic Images Realistic Videos Draft Texts

These systems are “creative”: they generate new objects.

5/30



Why GenAl is Linked to Big Data and Computation

e Generative modeling approximates extremely complex distributions over
high-dimensional objects.

e Doing so reliably typically demands:

1. Massive training datasets (multimodal, curated, filtered)

2. Large-scale optimization (stochastic methods, many iterations)
e Computational enablers:

e GPUs/TPUs and distributed systems

e scalable stochastic optimization algorithms

e data pipelines (storage, preprocessing, streaming)
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Generative Modeling as Sampling



Modalities: Representing Data Numerically

We begin by thinking about different data types (modalities) and how to represent
them numerically.

1. Image: H x W pixels with 3 color channels

Zc RHX Wx3

2. Video: a sequence of T frames

Ze RTXHX W x3

3. Molecular structure: N atoms with 3D coordinates

Z=(24...,ZM)YeR¥>N 7/ cR3
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High-Dimensional Viewpoint

After choosing a representation, we can flatten the object into a vector:
Z eRY,

where d may be extremely large.

Key ldea ( Representation )

Once data are represented as vectors, modeling and generation become questions
about probability distributions on R9.

Examples of dimensionality
Images: d =H-W -3; Videos: d=T-H-W 3.
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Generation as Sampling: Intuition

Suppose we want to generate an image of a dog.

e There is no single “best” dog image.

e There are many acceptable images, varying in realism and diversity.

Statistical viewpoint

Replace the vague question “How good is this sample?” by

“How likely is it under the data distribution?”
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The Data Distribution

We posit an (unknown) data distribution and denote it by pyata-

e Higher probability: objects that look like valid data

e Lower probability: implausible / out-of-distribution objects

Key Idea ( Generation as Sampling )

Generating an object Z is modeled as sampling from the (unknown) data distribution:

Z~ Pdata-
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Datasets as Finite Samples

We do not observe pgata directly; we observe a dataset.

Key Idea ( Dataset )

A dataset consists of a finite collection of samples

ii.d.

Zl’ . '7Zn ~ Pdata-

e Images: large collections of photos (public/curated datasets)
e Videos: curated repositories

e Molecules/proteins: experimental databases (e.g., PDB)
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What is a Generative Model?

A generative model aims to approximate pga.ta Well enough to produce realistic

samples.

Two core tasks

1. Learning: fit a model distribution using Zi.,.

2. Sampling: draw new synthetic samples that resemble the data.

Key Idea ( Core objective )

Learn a distribution whose samples match the dataset in relevant ways.
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Conditional Generation

In many applications, we want generation conditioned on some input y.

Key Idea ( Conditional Generation )

Conditional generation is modeled as sampling

Z’\'pdata(' ’)/)7

where y is a conditioning variable (label, prompt, side information).

Practical goal

A single model that can condition on many possible values of y (e.g., many text
prompts).
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Unconditional vs Conditional Generation

Unconditional generation

We generate objects without any side information:

Z~ Pdata-

Conditional generation

We generate objects given some input Y = y (prompt/label /context):

Zdiata(" Y:)/)~

Key Idea ( Two viewpoints )
Unconditional models learn the overall distribution of the dataset; conditional models

learn how the distribution changes with y. s



Examples of Conditioning Variables Y

Class-conditional images: Y € {cat, dog, car, ... }.

Text-to-image: Y = a text prompt describing desired content/style.

Inpainting / editing: Y = partially observed image + mask.

e Molecules/proteins: Y = desired properties (binding affinity, solubility,
constraints).

Interpretation

Conditioning tells the model what kind of sample to generate.
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How Datasets Support Conditional Generation

For conditional generation, we typically observe paired data:

ii.d.

(Zlv Y1)7 DRI (Zn; Yn) ~ Pdata(Z7Y)-

Two equivalent targets

e Learn the joint distribution pgata(z,y), then sample Z | Y = y.

e Learn the conditional distribution pyata(z | y) directly.

Key Idea ( Unconditional as a special case )

Unconditional generation corresponds to sampling from the marginal:

Pdata(z) :/Pdata(zv)/) dy.
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Sampling: What Does It Mean Operationally?

Once a model is trained (e.g., pg), sampling means producing a new random draw.

Unconditional sampling

Sample Z ~ py.

Produces a diverse set of samples reflecting the overall training distribution.

Conditional sampling

Fix y, then sample Z ~ py(- | y).

Produces diverse samples consistent with the same condition y.

Key Idea ( Diversity vs control )
Unconditional: diversity with less control. Conditional: diversity given control.
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Fundamentals: Notation and
Models




Random Samples and Notation

Convention

Capital letters denote random variables; lower-case letters denote observed values.

Random sample

Xi1,...,X, are a random sample if

We write Xi., = (X1,...,X,) and x1.p = (X1, . ., Xn)-
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CDF and PDF

F(x) =P(X < x), x € R.

PDF (when it exists)

If F is differentiable, then

For discrete X, p(x) typically denotes a probability mass function (pmf).
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Statistical Models

A statistical model is a family of distributions indexed by ©:

P={py:0c 0O}

Parametric vs Nonparametric

e Parametric: O is finite-dimensional (e.g., © C RY).
e Nonparametric: no finite-dimensional parameterization.

Gaussian family (parametric)

P= {pu,g2(><) =

The parameter 6 = (u, 02) is 2-dimensional (finite-dimensional). 20/30

exp<—(x_'u)2> c peR, 02>0}.
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Examples: Parametric and Nonparametric Models

Gaussian family (parametric)

1 . 2
P = {pw,z(x) = Wexp(—%gé”) - wER, 6% > 0}.

Why parametric? The parameter § = (u,02) is 2-dimensional (finite-dimensional).

All PDFs (nonparametric)

P = {all PDFs on R}.

Why nonparametric? There is no finite-dimensional parameter 6 that can index all
PDFs.

Key Idea ( Course plan )

We start with parametric models (cleaner theory), then return to nonparametric

models later. 21/30



Estimators and MLE




Estimators: Key Definitions

Point estimation

Given X, ..., X, =& po(x), point estimation produces a single value intended to

approximate 6.

A

9!‘! :g(X].?"')Xn)a

where g : R" — © is measurable.
g

~

. i oA P
0, is consistent if 8, — 6 as n — oo.
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Bias and Unbiasedness

Bias(f,) = E[0,] — 6.

Unbiased estimator

0, is unbiased if Bias(f,) = 0.

|

Key Idea ( Important distinction )
Unbiasedness and consistency are different properties, and neither implies the other.
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Example: Unbiased vs Consistent

Normal mean example
If X1,..., Xn ™ N(p,1):

o (1) = Xy is unbiased but not consistent.

° [ng) = %27:1 X; is unbiased and consistent.
~(3
o =1

= 7 S"_, X; is biased but consistent.
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Likelihood and Log-Likelihood

Likelihood (single observation)

L(0; x) = pa(x)-

Joint likelihood (i.i.d. data)

Ln((g; Xl:n) = H Pe(Xi)-
i=1

Log-likelihood

n(6; X1:n) Zlogpe (x)-
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Maximum Likelihood Estimator (MLE)

0, € argmax Lp(0; x1.p) < 0, € arg max £, (6; x1.p)-
6cO 0cO

Key Idea ( Computation )

Working with ¢, is numerically more stable and turns products into sums.
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MLE Example: Gaussian

Gaussian distribution

iid.

If X1,..., Xy "™ N(,02), then

fin=2Xn,  G2==) (Xi— X))

i=1

The MLE for 02 uses 1/n (the unbiased sample variance uses 1/(n — 1)).
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Asymptotics of the MLE (Informal)

Asymptotic normality

VA, —6) 2 N0, 1(6)7h).

Scalar Fisher information

<aag log pg(X))z = —E, [88;2 log Pe(X)] :

1(0) = Ey

7 .

Cramér—Rao type bound (informal)

For unbiased HN,,,
Var(f,) >

nl(6)
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Connecting MLE to Generative Modeling

e In generative modeling, the target is the (unknown) pgata-

e In a parametric generative model, posit {py : 0 € ©} and estimate # via MLE:

n
f e arg maxz log po(z;)-
bco ‘=

o After learning 6, we can sample:
Key Idea ( Big picture )
Modeling 4+ Optimization + Compute = scalable learning and sampling.
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Wrap-Up




Wrap-Up

GenAl: generating new content ~ sampling from a learned distribution.

Big data + compute make modern GenAl feasible at scale.

Foundations today:

e representations and modalities; pyata; datasets as i.i.d. samples
e models (parametric/nonparametric) + examples

e estimators: bias, consistency; MLE and Gaussian example

Next: predictive modeling
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