Artificial Neural Networks

Qiang Sun
University of Toronto

Artificial Neural Network

T y.
— A network of artificial neurons that - I/ Dendrites <""
mimics real biological neural networks wdese X ’ X
« Each has a body, axon, and many dendrites Q 4 |
« A neuron can fire or rest / Ry Aron terminals
- Athreshold to activate (fire) 4 Cellbody
— Perceptron (Frank Rosenblatt, 1956) 1 W,

* Fundamental building block
of deep learning

What is Perceptron? Xy T
. at is Perceptron*
* How is it defined? W/> X — /S

« Build deep NN from X2 w
a Perceptron

A

The Perceptron - A single Neuron

Linear combination
1 Output of inputs

Wy l 1

X1 \ 5} =J9 (xiWi)
W, X — ya 57'
/ Non-linear Bias

activation function

Binary Classification:
Inputs VVeights Sum Non-Linearity Output
(x4, ..., x,y) feature of a data
y € 10,1]: probability belongs to the positive class

The Perceptron

g(XiW;)

&
[N
>
<

Yy=gwe +X"W)

21
where: X = : and W =
Inputs VVeights Sum Non-Linearity Output Tom

The Perceptron

g(

&=
[N
/5
>
A

Inputs VVeights Sum Non-Linearity Output

Activation Functions

Linear activation function:
= gla) =a

= Correspond to linear regression 30

2.5F T — T —]

2.0 A —— R e A]
1| e S— e]
e —
ot]
0.0f e E— SRS o]
sl - S T H—
S10f s e T— e]
—15F rrrrrrrrrrrrrrrrrr R ERERERIEE rrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrr
Y S < S R —

_asp R — T ——

-3.0

Non-linear Activation Functions

Sigmoid activation function:

— Squashes the neuron’s output between 0 and 1
exp(a) 1
1+exp(a) 1+ exp(—a)

g(a) =o(a) =

— Always positive and strictly increasing

1= e —

— Naturally suitable for probability /

» Logistic Regression

Wi X
§= Py = 1x) = —SPWo T 2 wiky) pd
1 +exp(wo+), wiX;) | " | g l ! !

Non-linear Activation Functions

Hyperbolic tangent (“tanh”) activation function:

L __ exp(a)—exp(—a) _ exp(2a)—1
g(a) o tanh(a) ~ exp(a)texp(—a) exp(2a)+1

— Squashes the neuron’s output between -1 and 1
— Strictly Increasing

0.0

NiE=

-1.0 T B s

Non-linear Activation Functions

Rectified linear Unit (RelLU), activation function:

Rectified linear Unit (ReLU), activation function:

— Nair and Hinton (2010)

— Bounded below by 0 (always non-negative)
— Not upper bounded

— Not smooth

— other variants of ReLU (Leaky RelLU)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

30

Importance of Activation Function

@
23 % ey’
oooo - oo oob‘ow”“ °
- o ®°,® o > *
T A SO
S 00000’ o® oo.w o® o, 0000339%
o,oo.l‘. ¢eo® o ro

oq ¢ P - $ ®
AR Rt PR
. o S & < i -

Non-linearity

04 0.5 0.6 0.7 0.6 03

0.3

0.2

0.1

We want to build a Neural Network to distinguish green vs red points

05
D4

More complex neural networks

Non-linearity allows us to

Linear activation function produce

approximate complex functions

linear decision boundaries

The Perceptron:Simplified

Inputs VVeights Sum Non-Linearity Output

The Perceptron:Simplified

Inputs VVeights Sum Non-Linearity Output

Single Output Perceptron

14%)
2

> Y
>
Xm

m
y=gWwy + _Z:lxiWi)

l

What if we have multi-output y; and y,?

Multi Output Perceptron

X1 . m
Vi =9wg, + _lein)
=
X2 = m
V2 =gWwpy + _leiWi,z)
=
Xm

m
Output ; = g(Wo,1 + E xiwi,))
1=

Extend to Single (Hidden) Layer Neural
Network

X1
Y1
X2
9,
xm
Z, = g(_|_ Z X, WL(;)) (1) Indicates the 1st layer
(1) (1) e

—g(Woz -I—X1W12 T XoWy 5 X Wy 5

Single (Hidden) Layer Neural Network

1 Parameters to be learned
Z1 w=mwo® w?)
X1
Z9 V1
X2
Z3 Vo
9%
Zd
Inputs Hidden Final Output

= g(wy; + wa(l)) D= gwys) + ZZ w o)
]_

Single (Hidden) Layer Neural Network

Z1
S ATE wo
Z9 Y1
2
Z3 Y2
Xm,
Zqg
Inputs Hidden Final Output

= g(wy; + Z xw,) D = g(wgy) Z @)y

Single (Hidden) Layer Neural Network

Z1
S ATE wo
Z9 Y1
X2
Z3 V2 - |
Activation functions
Xm can be different
_Z l in different layers
Inputs Hidden Final Output

=g(w,; + Z xw,) D = g(wgy) 2 @)y

Two-Layer Neural Network

w® w2 w®
;O
X1 2
/O 9
X9 Z§2)
7 :gl) Vo
Zd1
Inputs Hidden Hidden Output

Layer | Layer 2

Two-Layer Neural Network

Inputs Hidden
Layer |

Hidden
Layer 2

w®
A
Y2
Output

Multi-Layer (Deep) Neural Network

21(1) zfz) Zig) Z£4)
X1
251) Z§2) ng) Z§4)
v
(1) (2) 3 4
3 Z3 Z?E : Z?E :
X,
(1) (2) (3) (4)
Z4, Z4, Z4, Z4,

Inputs Hidden | Hidden 2 Hidden 3 Hidden 4

Deep Neural Network (DNN)

Zy
X1
k A
Zé) V1
xz
(k) a
Z3 Y2
Xm
(k)
Zg,
Inputs Hidden Output
dr—1
(k) _ (k) (k—=1) (k)
z; = g(WO,J- + E,l Z Wy

Feed-forward Networks and Backpropagation

Feed-forward

Zl(l) Z£2) Z£3) Z£4)
X1

Zgl) Z§2) Zég) Z§4) 5;1
”

Z?()l) Z:,SZ) ZPEB) Z§4) Y2
X

(1) (2) (3) (4)

24, Zq, Z4, Z4,

Inputs Hidden | Hidden 2 Hidden 3 Hidden 4 Output

How to learn the weights?

Feed-forward Networks and Backpropagation

Feed-forward

>

Zl(l) Z£2) Z£3) Z£4)
X1

Zgl) Z§2) Zég) Z§4) 5;1
”

Z?()l) Z:,SZ) ZPEB) Z§4) Y2
X

(1) (2) (3) (4)

24, Zq, Z4, Z4,

Inputs Hidden | Hidden 2 Hidden 3 Hidden 4 Output
<

How to learn the weights? Backpropagation

Example Problem

Will | pass the class?

— Let’s start with a simple two-feature model

* x; = Number of lectures you attend
* X, = Hours spent on the final project

Example Problem: Will |l pass the class?

X = Hours
spent on the
final project
Legend
. Pass
@ Fri

X1 = Number of lectures you attend

Example Problem: Will |l pass the class?

X = Hours
spent on the
final project
Legend
. Pass
@ Fri

X1 = Number of lectures you attend

Initialization

Initialize the network to realize the first feed-forward pass

= Step 1: Initialize W = (W™, W)

N
N
<

Initialization

Initialize the network for the first feed-forward pass

= Step 1: Initialize W = (W™, W)

Z1
X1
Z7
X2
Z3
w) = 0.1 wy = 0.1

— For example, set all weights to 0.1

<

Feed-forward

Data Point: “1
| ~ X1
x!1l =14,5] Zy
L x,
Z3
w® =01 w® =01

l;_] l"]

<

Feed-forward

0 1 1
Z1 =4 (Wé}l) + x1W1(,1) + szz(,l))

Zq
| - 4
x1 =14,5] Z2 iy =
L. §
Z3

Feed-forward

0 1 1
Z1 =4 (Wé}l) + x1W1(,1) + szz(,l))

= ReLU(0.1+4 x 0.1 +5x 0.1) = ReLU(1) = 1.

Zq
| - 4
x1 =14,5] Z2 iy =
L. §
Z3

Feed-forward

0 1 1
Z1 =4 (Wé}l) + x1W1(,1) + szz(,l))

= ReLU(0.1+4 x 0.1 +5x 0.1) = ReLU(1) = 1.

1 Wi(j) = 0.1

o 2 2 2 2
y=g (Wé}l) + 21W1(,1) + zzwz(,l) + Z3W§,1))

= ReLU(0.4) = 0.4

Feed-forward

Model Assessment - Quantifying Loss

x(D = l4 5] Predicted: 0.4
S Xo Actual: 1

loss(f(x11; w), YUy

Predicted Actual

Model Assessment - Quantifying Loss

x(D = l4 5] Predicted: 0.4
S Xo Actual: 1

loss(f(x11; w), YUy

Predicted Actual

Model Assessment—-Empirical Risk

The empirical Risk measures the total loss over the training dataset

4 5 - “1
2 2
X = le 8 Zy
: x2
T Zs

f(x)
0.4]
0.25
0.55

min J(W) = % g}l loss(f(X[i]; w), y[i])

Predicted

Actual

Model Assessment—-Empirical Risk

The empirical Risk measures the total loss over the training dataset

TN
oo N U

Also known as: .
* Objective function min

 Cost function

Z1 _f (x)_
0.4
X
1 . 0.25
Z2 Y 0.55
x2 :
Z3 E.

1 n . .
Jw) =~ % loss(f(X!d; w), vl
=1

Predicted Actual

Quantifying Loss - Binary Classification

= 0/1 Loss: loss(Y, f(X)) = 1ly.rx)
— loss = 0 when correctly classified, 1 when misclassified
— Intuitive but hard to train

min J(W) = % g}l loss(f(X[i]; w), y[i])

Predicted Actual

Quantifying Loss - Binary Classification

= 0/1 Loss: loss(Y, f(X)) = 1ly.rx)
— loss = 0 when correctly classified, 1 when misclassified
— Intuitive but hard to train

= Binary Cross Entropy Loss: loss(Y, f(X)) = —Ylog f(X) — (1 —Y) log(1 — f(X))
— measure of the difference between two probability distributions
— Can be used when output a probability from 0 to 1

min J(W) = % '75:1 loss(f(X[i]; w), y[i])

Predicted Actual

Classification: Binary Cross Entropy Loss

Using Binary Cross Entropy Loss for binary classification

- . Z1 _f (x)_ 7
4, 5 X 0.4 |
y = | 2?2 . |o2s| |0
6, 8 Z2 Y loss |
: : xz : :
i i Zs] L

min J(W) = % g}l —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted

Classification: Binary Cross Entropy Loss

-

True label —log(f)

0.5

f f

min J(W) = % i —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted

Classification: Binary Cross Entropy Loss

True label —log(f)

Hope —log(f) to be small
such that f isclose to 1 0.5

f

min J(W) = % _i —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted

Classification: Binary Cross Entropy Loss

True label —log(f}] True label —log(1 - f
ylil =1 ylil =0

Hope —log(1 — f) to be small

Hope —log(f) to be small such that f to be close to 0

such that f is close to 1

min J(W) = % i —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted

Classification: Binary Cross Entropy Loss

* Binary Cross Entropy Loss
loss = =Ylogf(X;W)—(1—-Y)log(1— f(X;W))
= Vectorize True Labelas (Y;,Y,): Y,=YandY,=1-Y

= Prediction: ¥, = f(X;W) versus Y, =1— f(X; W)
loss = —Y;log¥V; — Y, log¥,

Extend the definition Multi-Class?

Classification: Multi-class Cross Entropy
Loss

Binary Cross-entropy loss = —Y;log¥V, — Y, log¥,

K Classes: loss=—) Y, log(?k)
k=1,...K

Vectorize Y = (Y, Y,,Y5,..)T: loss = —YTlog(¥)

The true label vector ., y;, = 1. How to make sure)., 9, = 1?

Cross-Entropy
Loss

e A

— Apply a Softmax operator to the output { \
S Softmax } {

— Use it as the activation
function of the last layer exp(sy)

— When no hidden layer: logistic regression Yk = S exp(sy)

Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers

_ _ Z4
4, 5 X1
vy = |2 2 p
6, 8 2
: X9
N | Z,

min J(W) = %i loss((X' w), vl

Predicted

Actual

\

)

J&
30 90
80 20
85 95

Final C;r'ades
(percentage)

Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers

(F(x10;w) — yld)’

Predicted

Actual

\

)

J&
30 90
80 20
85 95

Final C;r'ades
(percentage)

Loss Optimization

We want to find the network weights that achieve the lowest loss

loss((Xl w), ylih

W — {W<1)7W(2>’...}

W* = argmin J(W) =—
7%

n

l

Remember:
Our loss is a function of the network weights!

Loss Optimization - Gradient Descent

W* = argmin /(W)
W

J (w()awl) <

Wy 0.1 s 8 #
MIT Course: MIT 6.5191: © Alexander Amini‘and Ava SoleinYany

Loss Optimization - Gradient Descent

Randomly pick an initial (wy, wy)

J (’LU(),’LUl) e

Wy 0.1 s 8 #
MIT Course: MIT 6.5191: © Alexander Amini‘and Ava SoleinYany

Loss Optimization - Gradient Descent

Compute gradient and move towards negative gradient direction

J (w()awl) <

Wy 0.1 s 8 #
MIT Course: MIT 6.5191: © Alexander Amini‘and Ava SoleinYany

Loss Optimization - Gradient Descent

Repeat until convergence

J ('LUO,’LUl)

Loss Optimization - Gradient Descent

A o

Initialize weights

Loop until convergence:

. oJj(W)
Compute gradient, pom
Update weights, W' « Wt —p (;]V(VM-/r)

Return weights

Loss Optimization - Gradient Descent

Initialize weights Question 1: How to set initial weights?

Loop until convergence:

oJj(Ww)
ow

Update weights, Wt « Wt —p

Compute gradient,
aJj(W)
owrT

A o

Return weights

Loss Optimization - Gradient Descent

Initialize weights Question 1: How to set initial weights?
Loop until convergence:

: aJj(w S o
Compute gradlent,]ai/v) Question 2: How to compute gradient:

ajw)
owrT

Update weights, Wt « Wt —p

A o

Return weights

Loss Optimization - Gradient Descent

Question 3: How to choose the stepsize?

Update weights, Wt « Wt —n

owrT
Return Weights n: Stepsize (Learning Rates)

1. Initialize weights Question 1: How to set initial weights?
2. Loop until convergence:

3. Compute gradient, a]aLmVl/) Question 2: How to compute gradient?
A W)

5.

Loss Optimization - Gradient Descent

Question 3: How to choose the stepsize?

Update weights, Wt « Wt —n

owrT
Return Weights n: Stepsize (Learning Rates)

1. Initialize weights Question 1: How to set initial weights?

2. Loop until convergence: Question 4:When to stop?

3. Com pute gradient M Question 2: How to compute gradient?
' ' oW

A aJj(W)

5.

ks!

Questions?

	Title Slide
	Slide 1: Artificial Neural Networks
	Slide 2: Artificial Neural Network
	Slide 3: The Perceptron – A single Neuron
	Slide 4: The Perceptron
	Slide 5: The Perceptron
	Slide 6: Activation Functions
	Slide 7: Non-linear Activation Functions
	Slide 8: Non-linear Activation Functions
	Slide 9: Non-linear Activation Functions
	Slide 10: Importance of Activation Function
	Slide 11: More complex neural networks
	Slide 12: The Perceptron: Simplified
	Slide 13: The Perceptron: Simplified
	Slide 14: Single Output Perceptron
	Slide 15: Multi Output Perceptron
	Slide 16: Extend to Single (Hidden) Layer Neural Network
	Slide 17: Single (Hidden) Layer Neural Network
	Slide 18: Single (Hidden) Layer Neural Network
	Slide 19: Single (Hidden) Layer Neural Network
	Slide 20: Two-Layer Neural Network
	Slide 21: Two-Layer Neural Network
	Slide 22: Multi-Layer (Deep) Neural Network
	Slide 23: Deep Neural Network (DNN)
	Slide 26: Feed-forward Networks and Backpropagation
	Slide 27: Feed-forward Networks and Backpropagation
	Slide 28: Example Problem
	Slide 29: Example Problem: Will I pass the class?
	Slide 30: Example Problem: Will I pass the class?
	Slide 31: Initialization
	Slide 32: Initialization
	Slide 33: Feed-forward
	Slide 34: Feed-forward
	Slide 35: Feed-forward
	Slide 36: Feed-forward
	Slide 37: Feed-forward
	Slide 38: Model Assessment - Quantifying Loss
	Slide 39: Model Assessment - Quantifying Loss
	Slide 40: Model Assessment – Empirical Risk
	Slide 41: Model Assessment – Empirical Risk
	Slide 42: Quantifying Loss – Binary Classification
	Slide 43: Quantifying Loss – Binary Classification
	Slide 44: Classification: Binary Cross Entropy Loss
	Slide 45: Classification: Binary Cross Entropy Loss
	Slide 46: Classification: Binary Cross Entropy Loss
	Slide 47: Classification: Binary Cross Entropy Loss
	Slide 48: Classification: Binary Cross Entropy Loss
	Slide 49: Classification: Multi-class Cross Entropy Loss
	Slide 50: Regression: Mean Squared Error Loss
	Slide 51: Regression: Mean Squared Error Loss
	Slide 52: Loss Optimization
	Slide 53: Loss Optimization - Gradient Descent
	Slide 54: Loss Optimization - Gradient Descent
	Slide 55: Loss Optimization - Gradient Descent
	Slide 56: Loss Optimization - Gradient Descent
	Slide 57: Loss Optimization - Gradient Descent
	Slide 58: Loss Optimization - Gradient Descent
	Slide 59: Loss Optimization - Gradient Descent
	Slide 60: Loss Optimization - Gradient Descent
	Slide 61: Loss Optimization - Gradient Descent
	Slide 62

