
Qiang Sun

University of Toronto

Artificial Neural Networks

Artificial Neural Network

– A network of artificial neurons that
mimics real biological neural networks

• Each has a body, axon, and many dendrites

• A neuron can fire or rest

• A threshold to activate (fire)

– Perceptron (Frank Rosenblatt, 1956)

• Fundamental building block
of deep learning

• What is Perceptron?

• How is it defined?

• Build deep NN from
a Perceptron

1

Σ
𝑤1

𝑤2

𝑤𝑚

𝑤0

𝑥1

𝑥2

𝑥𝑚

ො𝑦

The Perceptron – A single Neuron

Non-linear

activation function

Output
Linear combination

of inputs

Bias

Binary Classification:

𝑥1, … , 𝑥𝑚 feature of a data
ො𝑦 ∈ 0,1 : probability belongs to the positive class

ො𝑦 = 𝑔(𝑤0 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖)

…

Inputs Weights Sum Non-Linearity

1

Σ

Output

𝑤1

𝑤2

𝑤𝑚

𝑤0

𝑥1

𝑥2

𝑥𝑚

ො𝑦

The Perceptron

ො𝑦 = 𝑔(𝑤0 + 𝑋⊤𝑊)…

ො𝑦 = 𝑔(𝑤0 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖)

Inputs Weights Sum Non-Linearity

1

Σ

Output

𝑤1

𝑤2

𝑤𝑚

𝑤0

𝑥1

𝑥2

𝑥𝑚

ො𝑦

The Perceptron

…

ො𝑦 = 𝑔(𝑤0 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖)

Inputs Weights Sum Non-Linearity

1

Σ

Output

𝑤1

𝑤2

𝑤𝑚

𝑤0

𝑥1

𝑥2

𝑥𝑚

ො𝑦

Activation Functions

Linear activation function:

▪ 𝑔 𝑎 = 𝑎

▪ Correspond to linear regression

Non-linear Activation Functions

Sigmoid activation function:

– Squashes the neuron’s output between 0 and 1

– Always positive and strictly increasing

– Naturally suitable for probability

• Logistic Regression

𝑔 𝑎 = 𝜎 𝑎 =
exp 𝑎

1 + exp 𝑎
=

1

1 + exp(−𝑎)

ො𝑦 =

Non-linear Activation Functions

Hyperbolic tangent (‘‘tanh’’) activation function:

– Squashes the neuron’s output between -1 and 1

– Strictly Increasing

Non-linear Activation Functions

Rectified linear Unit (ReLU), activation function:

• Rectified linear Unit (ReLU), activation function:

– Nair and Hinton (2010)

– Bounded below by 0 (always non-negative)

– Not upper bounded

– Not smooth

– other variants of ReLU (Leaky ReLU)

 https://adl1995.github.io/an-overview-of-activation-functions-used-in-neural-networks.html

Importance of Activation Function

Non-linearity

We want to build a Neural Network to distinguish green vs red points

More complex neural networks

Linear activation function produce
linear decision boundaries

Non-linearity allows us to
approximate complex functions

The Perceptron: Simplified

Inputs Weights Sum Non-Linearity

1

Σ

Output

𝑤1

𝑤2

𝑤𝑚

𝑤0

𝑥1

𝑥2

𝑥𝑚

ො𝑦

…

The Perceptron: Simplified

𝑥1

𝑥2

𝑥𝑚

ො𝑦

ො𝑦 = 𝑔(𝑤0 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖)

…

…

𝑤1

𝑤2

𝑤𝑚

Inputs Weights Sum Non-Linearity

1

Σ

Output

𝑤1

𝑤2

𝑤𝑚

𝑤0

𝑥1

𝑥2

𝑥𝑚

ො𝑦

Single Output Perceptron

𝑥1

𝑥2

𝑥𝑚

ො𝑦

ො𝑦 = 𝑔(𝑤0 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖)

What if we have multi-output ො𝑦1 and ො𝑦2?

𝑤1

𝑤2

𝑤𝑚

Multi Output Perceptron

𝑥1

𝑥2

𝑥𝑚

ො𝑦1

ො𝑦2

= 𝑔(𝑤0,1 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖,1)

= 𝑔(𝑤0,2 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖,2)

Output ො𝑦𝑗 = 𝑔(𝑤0,1 + ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖,𝑗)

…

Extend to Single (Hidden) Layer Neural
Network

𝑥1

𝑥2

𝑥𝑚

𝑧1

𝑧2

𝑧3

𝑧𝑑

ො𝑦1

ො𝑦2

𝑤1,2
(1)

𝑤2,2
(1)

𝑤𝑚,2
(1)

(1) Indicates the 1st layer
𝑧2 = 𝑔(𝑤0,2

(1)
+ ∑

𝑚

𝑖=1
𝑥𝑖𝑤𝑖,2

(1)
)

 = 𝑔(𝑤0,2
1

+ 𝑥1𝑤1,2
1

+ 𝑥2𝑤2,2
1

+ ⋯ +𝑥𝑚 𝑤𝑚,2
(1)

)

…

…

Single (Hidden) Layer Neural Network

Inputs Final OutputHidden

𝑥1

𝑥2

𝑥𝑚

𝑧1

𝑧2

𝑧3

𝑧𝑑

ො𝑦1

ො𝑦2

𝑾(1)
𝑾(2)

Parameters to be learned

𝑾 = (𝑾 1 , 𝑾 2)

𝑧𝑗 = 𝑔(𝑤0,𝑗
(1)

+ ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖,𝑗

(1)
) ො𝑦𝑘 = 𝑔(𝑤0,𝑘

(2)
+ ∑

𝑑

𝑗=1
𝑧𝑗𝑤𝑗,𝑘

(2)
)

…

…

Single (Hidden) Layer Neural Network

Inputs Final OutputHidden

𝑥1

𝑥2

𝑥𝑚

𝑧1

𝑧2

𝑧3

𝑧𝑑

ො𝑦1

ො𝑦2

𝑧𝑗 = 𝑔(𝑤0,𝑗
(1)

+ ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖,𝑗

(1)
) ො𝑦𝑘 = 𝑔(𝑤0,𝑘

(2)
+ ∑

𝑑

𝑗=1
𝑧𝑗𝑤𝑗,𝑘

(2)
)

…

…

𝑾(1) 𝑾(2)

Single (Hidden) Layer Neural Network

Inputs Final OutputHidden

𝑥1

𝑥2

𝑥𝑚

𝑧1

𝑧2

𝑧3

𝑧𝑑

ො𝑦1

ො𝑦2

𝑧𝑗 = 𝑔(𝑤0,𝑗
(1)

+ ∑
𝑚

𝑖=1
𝑥𝑖𝑤𝑖,𝑗

(1)
) ො𝑦𝑘 = 𝑔(𝑤0,𝑘

(2)
+ ∑

𝑑

𝑗=1
𝑧𝑗𝑤𝑗,𝑘

(2)
)

…

…

𝑾(1) 𝑾(2)

Activation functions
can be different
in different layers

Two-Layer Neural Network

Inputs Output

𝑥1

𝑥2

𝑥𝑚

ො𝑦1

ො𝑦2

𝑾(1)
𝑾(3)

𝑧1
(1)

Hidden

Layer 1

𝑧2
(1)

𝑧3
(1)

𝑧𝑑1

(1)

…

…

Hidden

Layer 2

𝑧1
(2)

𝑧2
(2)

𝑧𝑑2

(2)

…

𝑾(2)

Two-Layer Neural Network

Inputs Output

𝑥1

𝑥2

𝑥𝑚

ො𝑦1

ො𝑦2

𝑾(1)
𝑾(3)

𝑧1
(1)

Hidden

Layer 1

𝑧2
(1)

𝑧3
(1)

𝑧𝑑1

(1)

…

…

Hidden

Layer 2

𝑧1
(2)

𝑧2
(2)

𝑧𝑑2

(2)

…

𝑾(2)

Multi-Layer (Deep) Neural Network

Inputs Hidden 1

from tf.keras.layers import *

𝑥1

𝑥2

𝑥𝑚

…

ො𝑦1

ො𝑦2

𝑧1
(1)

𝑧2
(1)

𝑧3
(1)

𝑧𝑑1

(1)

…

Hidden 3

𝑧1
(3)

𝑧2
(3)

𝑧3
(3)

𝑧𝑑3

(3)

…

Hidden 2 Hidden 4

𝑧1
(4)

𝑧2
(4)

𝑧3
(4)

𝑧𝑑4

(4)

…

𝑧1
(2)

𝑧2
(2)

𝑧3
(2)

𝑧𝑑2

(2)

…

Deep Neural Network (DNN)

Inputs Hidden Output

⋯ ⋯

𝑥1

𝑥2

𝑥𝑚

𝑧1
𝑘

𝑧2
(𝑘)

𝑧3
(𝑘)

𝑧𝑑𝑘

(𝑘)

ො𝑦1

ො𝑦2

𝑧𝑗
(𝑘)

= 𝑔(𝑤0,𝑗
(𝑘)

+ ∑
𝑑𝑘−1

𝑖=1
𝑧𝑖

(𝑘−1)
𝑤𝑖,𝑗

(𝑘)
)

…

…

…

Feed-forward Networks and Backpropagation

Inputs Hidden 1

𝑥1

𝑥2

𝑥𝑚

…

ො𝑦1

ො𝑦2

𝑧1
(1)

𝑧2
(1)

𝑧3
(1)

𝑧𝑑1

(1)

…

Hidden 3

𝑧1
(3)

𝑧2
(3)

𝑧3
(3)

𝑧𝑑3

(3)

…

Hidden 2 Hidden 4

𝑧1
(4)

𝑧2
(4)

𝑧3
(4)

𝑧𝑑4

(4)

…

𝑧1
(2)

𝑧2
(2)

𝑧3
(2)

𝑧𝑑2

(2)

…

Output

Feed-forward

How to learn the weights?

Feed-forward Networks and Backpropagation

Inputs Hidden 1

𝑥1

𝑥2

𝑥𝑚

…

ො𝑦1

ො𝑦2

𝑧1
(1)

𝑧2
(1)

𝑧3
(1)

𝑧𝑑1

(1)

…

Hidden 3

𝑧1
(3)

𝑧2
(3)

𝑧3
(3)

𝑧𝑑3

(3)

…

Hidden 2 Hidden 4

𝑧1
(4)

𝑧2
(4)

𝑧3
(4)

𝑧𝑑4

(4)

…

𝑧1
(2)

𝑧2
(2)

𝑧3
(2)

𝑧𝑑2

(2)

…

Output

Feed-forward

BackpropagationHow to learn the weights?

Example Problem

Will I pass the class?

– Let’s start with a simple two-feature model

• 𝑥1 = Number of lectures you attend

• 𝑥2 = Hours spent on the final project

Example Problem: Will I pass the class?

= Hours

spent on the

final project

Legend

Pass

Fail

= Number of lectures you attend

𝑥2

𝑥1

Example Problem: Will I pass the class?

= Hours

spent on the

final project

Legend

Pass

Fail

= Number of lectures you attend

𝑥2

𝑥1

Initialization

Initialize the network to realize the first feed-forward pass

▪ Step 1: Initialize 𝑊 = (𝑊 1 , 𝑊 2)

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦

Initialization

Initialize the network for the first feed-forward pass

▪ Step 1: Initialize 𝑊 = (𝑊 1 , 𝑊 2)

– For example, set all weights to 0.1

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦

𝑤𝑖,𝑗
(1)

= 0.1 𝑤𝑖,𝑗
(2)

= 0.1

Feed-forward

=?

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦

𝑤𝑖,𝑗
(1)

= 0.1 𝑤𝑖,𝑗
(2)

= 0.1

= 4 , 5

Data Point:

𝑥[1]

Feed-forward

=?

4

5
= 4 , 5𝑥[1]

𝑧1

𝑧2

𝑧3

ො𝑦

𝑤𝑖,𝑗
(1)

= 0.1

𝑧1 = 𝑔 𝑤0,1
(0)

+ 𝑥1𝑤1,1
1

+ 𝑥2𝑤2,1
1

Feed-forward

=?

4

5
= 4 , 5𝑥[1]

𝑧1

𝑧2

𝑧3

ො𝑦

𝑤𝑖,𝑗
(1)

= 0.1

𝑧1 = 𝑔 𝑤0,1
(0)

+ 𝑥1𝑤1,1
1

+ 𝑥2𝑤2,1
1

 = ReLU 0.1 + 4 × 0.1 + 5 × 0.1 = ReLU 1 = 1.

Feed-forward

=?

4

5
= 4 , 5𝑥[1]

1

ො𝑦

𝑤𝑖,𝑗
(2)

= 0.1

1

1

ො𝑦 = 𝑔 𝑤0,1
(2)

+ 𝑧1𝑤1,1
2

+ 𝑧2𝑤2,1
2

+ 𝑧3𝑤3,1
2

 = ReLU 0.4 = 0.4

𝑧1 = 𝑔 𝑤0,1
(0)

+ 𝑥1𝑤1,1
1

+ 𝑥2𝑤2,1
1

 = ReLU 0.1 + 4 × 0.1 + 5 × 0.1 = ReLU 1 = 1.

Feed-forward

4

5
= 4 , 5𝑥[1] 0.4

𝑤𝑖,𝑗
(2)

= 0.1

1

1

1

Model Assessment - Quantifying Loss

Predicted Actual

Predicted:0.4
= 4 , 5

𝑥1

𝑥2

𝑥(1)

𝑧1

𝑧2

𝑧3

ො𝑦

𝑙𝑜𝑠𝑠(𝑓(𝑋 1 ; 𝑊), 𝑌 1)

Actual: 1

Model Assessment - Quantifying Loss

Predicted Actual

Predicted:0.4
= 4 , 5

𝑥1

𝑥2

𝑥(1)

𝑧1

𝑧2

𝑧3

ො𝑦

𝑙𝑜𝑠𝑠(𝑓(𝑋 1 ; 𝑊), 𝑌 1)

Actual: 1

Model Assessment – Empirical Risk

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠(𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖)

The empirical Risk measures the total loss over the training dataset

4, 5

2, 2

6, 8

 ⋮ ⋮

=

0.4

0.25

0.55

⋮

1

0

1

⋮

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦𝑿

𝑓(𝑥) 𝑦

Predicted Actual

Model Assessment – Empirical Risk

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠(𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖)

The empirical Risk measures the total loss over the training dataset

4, 5

2, 2

6, 8

 ⋮ ⋮

=

0.4

0.25

0.55

⋮

1

0

1

⋮

Also known as:

• Objective function

• Cost function

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦𝑿

𝑓(𝑥) 𝑦

Predicted Actual

Quantifying Loss – Binary Classification

▪ 0/1 Loss: 𝑙𝑜𝑠𝑠(𝑌, 𝑓 𝑋) = 1𝑌≠𝑓 𝑋

– 𝑙𝑜𝑠𝑠 = 0 when correctly classified, 1 when misclassified

– Intuitive but hard to train

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠(𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖)
Predicted Actual

Quantifying Loss – Binary Classification

▪ 0/1 Loss: 𝑙𝑜𝑠𝑠(𝑌, 𝑓 𝑋) = 1𝑌≠𝑓 𝑋

– 𝑙𝑜𝑠𝑠 = 0 when correctly classified, 1 when misclassified

– Intuitive but hard to train

▪ Binary Cross Entropy Loss: 𝑙𝑜𝑠𝑠(𝑌, 𝑓 𝑋) = −𝑌 log 𝑓 𝑋 − 1 − 𝑌 log(1 − 𝑓 𝑋)
– measure of the difference between two probability distributions

– Can be used when output a probability from 0 to 1

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠(𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖)
Predicted Actual

Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊)

Using Binary Cross Entropy Loss for binary classification

Actual Predicted Actual Predicted

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

4, 5

2, 2

6, 8

 ⋮ ⋮

=

0.4

0.25

0.55

⋮

1

0

1

⋮

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦𝑿

𝑓(𝑥) 𝑦

Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊)

Actual Predicted Actual Predicted

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

f
f

True label

𝑌[𝑖] = 1

Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊)

Actual Predicted Actual Predicted

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

f

Hope −log(𝑓) to be small
such that 𝑓 is close to 1

True label

𝑌[𝑖] = 1

Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊)

Actual Predicted Actual Predicted

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

f

Hope −log(𝑓) to be small
such that 𝑓 is close to 1

f

Hope −log(1 − 𝑓) to be small
such that 𝑓 to be close to 0

True label

𝑌[𝑖] = 1

True label

𝑌[𝑖] = 0

Classification: Binary Cross Entropy Loss

▪ Binary Cross Entropy Loss

𝑙𝑜𝑠𝑠 = −𝑌 log 𝑓 𝑋; 𝑊 − 1 − 𝑌 log(1 − 𝑓 𝑋; 𝑊)

▪ Vectorize True Label as (𝑌1, 𝑌0): 𝑌1 = 𝑌 and 𝑌0 = 1 − 𝑌

▪ Prediction: ෠𝑌1 = 𝑓 𝑋; 𝑊 versus ෠𝑌0 = 1 − 𝑓 𝑋; 𝑊

𝑙𝑜𝑠𝑠 = −𝑌1 log ෠𝑌1 − 𝑌0 log ෠𝑌0

– Note that 𝑌1 + 𝑌0 = 1 and ෠𝑌1 + ෠𝑌0 = 1

▪ Extend the definition Multi-Class?

Classification: Multi-class Cross Entropy
Loss

▪ Binary Cross-entropy 𝑙𝑜𝑠𝑠 = −𝑌1 log ෠𝑌1 − 𝑌0 log ෠𝑌0

▪ 𝐾 Classes: 𝑙𝑜𝑠𝑠 = − ∑
𝑘=1,…,𝐾

𝑌𝑘 log ෠𝑌𝑘

▪ Vectorize 𝑌 = 𝑌1, 𝑌2, 𝑌3, … ⊤: 𝑙𝑜𝑠𝑠 = −𝑌𝑇 log ෠𝑌

▪ The true label vector ∑𝑘 𝑦𝑘 = 1. How to make sure ∑𝑘 ො𝑦𝑘 = 1?

– Apply a Softmax operator to the output

– Use it as the activation

function of the last layer

– When no hidden layer: logistic regression
ො𝑦𝑘 =

exp 𝑠𝑘

∑ exp 𝑠𝑖

Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers

30

80

85

⋮

90

20

95

⋮

Final Grades

(percentage)

4, 5

2, 2

6, 8

 ⋮ ⋮

=

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦1
𝑿

𝑓(𝑥) 𝑦

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠(𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖)

Predicted Actual

Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers

30

80

85

⋮

90

20

95

⋮

Final Grades

(percentage)

4, 5

2, 2

6, 8

 ⋮ ⋮

=

𝑥1

𝑥2

𝑧1

𝑧2

𝑧3

ො𝑦1
𝑿

𝑓(𝑥) 𝑦

Predicted Actual

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑓 𝑋 𝑖 ; 𝑊 − 𝑌 𝑖 2

Loss Optimization

We want to find the network weights that achieve the lowest loss

Remember:
Our loss is a function of the network weights!

 𝑊∗ = argmin
𝑊

𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠(𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖)

Loss Optimization - Gradient Descent

𝑊∗ = argmin
𝑊

𝐽 𝑊

𝑤0

𝑤1

MIT Course: MIT 6.S191: © Alexander Amini and Ava Soleimany

Loss Optimization - Gradient Descent

Randomly pick an initial (𝑤0, 𝑤1)

𝑤0

𝑤1

MIT Course: MIT 6.S191: © Alexander Amini and Ava Soleimany

Loss Optimization - Gradient Descent

Compute gradient and move towards negative gradient direction

𝑤0

𝑤1

MIT Course: MIT 6.S191: © Alexander Amini and Ava Soleimany

Loss Optimization - Gradient Descent

Repeat until convergence

𝑤0

𝑤1

MIT Course: MIT 6.S191: © Alexander Amini and Ava Soleimany

Loss Optimization - Gradient Descent

1. Initialize weights

2. Loop until convergence:

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Loss Optimization - Gradient Descent

Question 1: How to set initial weights?1. Initialize weights

2. Loop until convergence:

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Loss Optimization - Gradient Descent

1. Initialize weights

2. Loop until convergence:

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Question 2: How to compute gradient?

Question 1: How to set initial weights?

Loss Optimization - Gradient Descent

𝜂: Stepsize (Learning Rates)

Question 1: How to set initial weights?

Question 2: How to compute gradient?

1. Initialize weights

2. Loop until convergence:

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Question 3: How to choose the stepsize?

Loss Optimization - Gradient Descent

Question 4: When to stop?

𝜂: Stepsize (Learning Rates)

Question 1: How to set initial weights?

Question 2: How to compute gradient?

1. Initialize weights

2. Loop until convergence:

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Question 3: How to choose the stepsize?

Questions?

	Title Slide
	Slide 1: Artificial Neural Networks
	Slide 2: Artificial Neural Network
	Slide 3: The Perceptron – A single Neuron
	Slide 4: The Perceptron
	Slide 5: The Perceptron
	Slide 6: Activation Functions
	Slide 7: Non-linear Activation Functions
	Slide 8: Non-linear Activation Functions
	Slide 9: Non-linear Activation Functions
	Slide 10: Importance of Activation Function
	Slide 11: More complex neural networks
	Slide 12: The Perceptron: Simplified
	Slide 13: The Perceptron: Simplified
	Slide 14: Single Output Perceptron
	Slide 15: Multi Output Perceptron
	Slide 16: Extend to Single (Hidden) Layer Neural Network
	Slide 17: Single (Hidden) Layer Neural Network
	Slide 18: Single (Hidden) Layer Neural Network
	Slide 19: Single (Hidden) Layer Neural Network
	Slide 20: Two-Layer Neural Network
	Slide 21: Two-Layer Neural Network
	Slide 22: Multi-Layer (Deep) Neural Network
	Slide 23: Deep Neural Network (DNN)
	Slide 26: Feed-forward Networks and Backpropagation
	Slide 27: Feed-forward Networks and Backpropagation
	Slide 28: Example Problem
	Slide 29: Example Problem: Will I pass the class?
	Slide 30: Example Problem: Will I pass the class?
	Slide 31: Initialization
	Slide 32: Initialization
	Slide 33: Feed-forward
	Slide 34: Feed-forward
	Slide 35: Feed-forward
	Slide 36: Feed-forward
	Slide 37: Feed-forward
	Slide 38: Model Assessment - Quantifying Loss
	Slide 39: Model Assessment - Quantifying Loss
	Slide 40: Model Assessment – Empirical Risk
	Slide 41: Model Assessment – Empirical Risk
	Slide 42: Quantifying Loss – Binary Classification
	Slide 43: Quantifying Loss – Binary Classification
	Slide 44: Classification: Binary Cross Entropy Loss
	Slide 45: Classification: Binary Cross Entropy Loss
	Slide 46: Classification: Binary Cross Entropy Loss
	Slide 47: Classification: Binary Cross Entropy Loss
	Slide 48: Classification: Binary Cross Entropy Loss
	Slide 49: Classification: Multi-class Cross Entropy Loss
	Slide 50: Regression: Mean Squared Error Loss
	Slide 51: Regression: Mean Squared Error Loss
	Slide 52: Loss Optimization
	Slide 53: Loss Optimization - Gradient Descent
	Slide 54: Loss Optimization - Gradient Descent
	Slide 55: Loss Optimization - Gradient Descent
	Slide 56: Loss Optimization - Gradient Descent
	Slide 57: Loss Optimization - Gradient Descent
	Slide 58: Loss Optimization - Gradient Descent
	Slide 59: Loss Optimization - Gradient Descent
	Slide 60: Loss Optimization - Gradient Descent
	Slide 61: Loss Optimization - Gradient Descent
	Slide 62

