
Qiang Sun

University of Toronto

Artificial Neural Networks



Artificial Neural Network

– A network of artificial neurons that 
mimics real biological neural networks

• Each has a body, axon, and many dendrites

• A neuron can fire or rest

• A threshold to activate (fire)

– Perceptron (Frank Rosenblatt, 1956)

• Fundamental building block
of deep learning

• What is Perceptron?

• How is it defined?

• Build deep NN from 
a Perceptron 
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The Perceptron – A single Neuron

Non-linear  

activation function

Output
Linear combination  

of inputs

Bias

Binary Classification:

𝑥1, … , 𝑥𝑚  feature of a data
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The Perceptron

ො𝑦 = 𝑔(𝑤0 + 𝑋⊤𝑊)…
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The Perceptron

…

ො𝑦 = 𝑔(𝑤0 + ∑
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Activation Functions

Linear activation function:

▪ 𝑔 𝑎 = 𝑎

▪ Correspond to linear regression



Non-linear Activation Functions

Sigmoid activation function:

– Squashes the neuron’s output between 0 and 1 

– Always positive and strictly increasing 

– Naturally suitable for probability  

• Logistic Regression

𝑔 𝑎 = 𝜎 𝑎 =
exp 𝑎

1 + exp 𝑎
=

1

1 + exp(−𝑎)

ො𝑦 =



Non-linear Activation Functions

Hyperbolic tangent (‘‘tanh’’) activation function:

– Squashes the neuron’s output between -1 and 1 

– Strictly Increasing 



Non-linear Activation Functions

Rectified linear Unit (ReLU), activation function: 

•  Rectified linear Unit (ReLU), activation function: 

– Nair and Hinton (2010)

– Bounded below by 0 (always non-negative)

– Not upper bounded

– Not smooth

– other variants of ReLU ( Leaky ReLU )

      https://adl1995.github.io/an-overview-of-activation-functions-used-in-neural-networks.html



Importance of Activation Function

Non-linearity

We want to build a Neural Network to distinguish green vs red points



More complex neural networks

Linear activation function produce 
linear decision boundaries 

Non-linearity allows us to 
approximate complex functions



The Perceptron: Simplified

Inputs Weights Sum Non-Linearity
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The Perceptron: Simplified
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Single Output Perceptron
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What if we have multi-output  ො𝑦1 and ො𝑦2?
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Multi Output Perceptron
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Extend to Single (Hidden) Layer Neural 
Network
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Single (Hidden) Layer Neural Network
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Single (Hidden) Layer Neural Network
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Single (Hidden) Layer Neural Network
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Activation functions
can be different 
in different layers



Two-Layer Neural Network
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Two-Layer Neural Network
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Multi-Layer (Deep) Neural Network
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Deep Neural Network (DNN)

Inputs Hidden Output
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Feed-forward Networks and Backpropagation
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Feed-forward Networks and Backpropagation
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Example Problem

Will I pass the class?

– Let’s start with a simple two-feature model

• 𝑥1 = Number of lectures you attend 

• 𝑥2 = Hours spent on the final project



Example Problem: Will I pass the class?

= Hours
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final project

Legend

Pass  
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Example Problem: Will I pass the class?

= Hours

spent on the

final project

Legend
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Initialization

Initialize the network to realize the first feed-forward pass

▪ Step 1: Initialize 𝑊 = (𝑊 1 , 𝑊 2 )
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Initialization

Initialize the network for the first feed-forward pass

▪ Step 1: Initialize 𝑊 = (𝑊 1 , 𝑊 2 )

– For example, set all weights to 0.1
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Feed-forward
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Feed-forward
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 = ReLU 0.1 + 4 × 0.1 + 5 × 0.1 = ReLU 1 = 1.   



Feed-forward
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 = ReLU 0.4 = 0.4     
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 = ReLU 0.1 + 4 × 0.1 + 5 × 0.1 = ReLU 1 = 1.   
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Model Assessment - Quantifying Loss

Predicted Actual
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Model Assessment - Quantifying Loss

Predicted Actual

Predicted:0.4
= 4 , 5
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𝑙𝑜𝑠𝑠( 𝑓(𝑋 1 ; 𝑊),  𝑌 1 )

Actual: 1



Model Assessment – Empirical Risk

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠( 𝑓(𝑋 𝑖 ; 𝑊),  𝑌 𝑖 )

The empirical Risk measures the total loss over the training dataset
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Model Assessment – Empirical Risk

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠( 𝑓(𝑋 𝑖 ; 𝑊),  𝑌 𝑖 )

The empirical Risk measures the total loss over the training dataset

4, 5

2, 2

6, 8

  ⋮ ⋮

=

0.4

0.25

0.55

⋮

1

0

1

⋮

Also known as:

• Objective function

• Cost function
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Quantifying Loss – Binary Classification

▪ 0/1 Loss: 𝑙𝑜𝑠𝑠(𝑌, 𝑓 𝑋 ) = 1𝑌≠𝑓 𝑋

– 𝑙𝑜𝑠𝑠 = 0 when correctly classified, 1 when misclassified

– Intuitive but hard to train

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠( 𝑓(𝑋 𝑖 ; 𝑊),  𝑌 𝑖 )
Predicted Actual



Quantifying Loss – Binary Classification

▪ 0/1 Loss: 𝑙𝑜𝑠𝑠(𝑌, 𝑓 𝑋 ) = 1𝑌≠𝑓 𝑋

– 𝑙𝑜𝑠𝑠 = 0 when correctly classified, 1 when misclassified

– Intuitive but hard to train

▪ Binary Cross Entropy Loss: 𝑙𝑜𝑠𝑠(𝑌, 𝑓 𝑋 ) = −𝑌 log 𝑓 𝑋 − 1 − 𝑌 log(1 − 𝑓 𝑋 )
– measure of the difference between two probability distributions

– Can be used when output a probability from 0 to 1

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠( 𝑓(𝑋 𝑖 ; 𝑊),  𝑌 𝑖 )
Predicted Actual



Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊 )

Using Binary Cross Entropy Loss for binary classification

Actual   Predicted      Actual         Predicted

loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred) )

4, 5

2, 2

6, 8

  ⋮ ⋮
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Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊 )

Actual   Predicted      Actual         Predicted

loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred) )

f
f

True label

𝑌[𝑖] = 1



Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊 )

Actual   Predicted      Actual         Predicted

loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred) )

f

Hope −log(𝑓) to be small
such that 𝑓 is close to 1

True label

𝑌[𝑖] = 1



Classification: Binary Cross Entropy Loss

min 𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

− 𝑌[𝑖] log 𝑓 𝑋[𝑖]; 𝑊 − 1 − 𝑌[𝑖] log(1 − 𝑓 𝑋[𝑖]; 𝑊 )

Actual   Predicted      Actual         Predicted

loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred) )

f

Hope −log(𝑓) to be small
such that 𝑓 is close to 1

f

Hope −log(1 − 𝑓) to be small
such that 𝑓 to be close to 0

True label

𝑌[𝑖] = 1

True label

𝑌[𝑖] = 0



Classification: Binary Cross Entropy Loss

▪ Binary Cross Entropy Loss

𝑙𝑜𝑠𝑠 =  −𝑌 log 𝑓 𝑋; 𝑊 − 1 − 𝑌 log(1 − 𝑓 𝑋; 𝑊 )

▪ Vectorize True Label as (𝑌1, 𝑌0):      𝑌1 = 𝑌 and 𝑌0 = 1 − 𝑌

▪ Prediction:      ෠𝑌1 = 𝑓 𝑋; 𝑊  versus ෠𝑌0 = 1 − 𝑓 𝑋; 𝑊

𝑙𝑜𝑠𝑠 =  −𝑌1 log ෠𝑌1 − 𝑌0 log ෠𝑌0

– Note that 𝑌1 + 𝑌0 = 1 and ෠𝑌1 + ෠𝑌0 = 1

▪ Extend the definition Multi-Class?



Classification: Multi-class Cross Entropy 
Loss

▪ Binary Cross-entropy  𝑙𝑜𝑠𝑠 =  −𝑌1 log ෠𝑌1 − 𝑌0 log ෠𝑌0

▪ 𝐾 Classes:       𝑙𝑜𝑠𝑠 = − ∑
𝑘=1,…,𝐾

𝑌𝑘 log ෠𝑌𝑘

▪ Vectorize 𝑌 = 𝑌1, 𝑌2, 𝑌3, … ⊤: 𝑙𝑜𝑠𝑠 = −𝑌𝑇 log ෠𝑌

▪ The true label vector ∑𝑘 𝑦𝑘 = 1. How to make sure ∑𝑘 ො𝑦𝑘 = 1?

– Apply a Softmax operator to the output

– Use it as the activation 

function of the last layer

– When no hidden layer: logistic regression
ො𝑦𝑘 =

exp 𝑠𝑘

∑ exp 𝑠𝑖



Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers 
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Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers 
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  𝑓 𝑋 𝑖 ; 𝑊 − 𝑌 𝑖 2



Loss Optimization

We want to find the network weights that achieve the lowest loss

Remember:
Our loss is a function of  the network weights!

 𝑊∗ = argmin
𝑊

𝐽 𝑊 =
1

𝑛
∑

𝑖=1

𝑛

 𝑙𝑜𝑠𝑠( 𝑓(𝑋 𝑖 ; 𝑊), 𝑌 𝑖 )



Loss Optimization - Gradient Descent

𝑊∗ = argmin
𝑊

𝐽 𝑊

𝑤0

𝑤1

MIT Course: MIT 6.S191:  © Alexander Amini and Ava Soleimany



Loss Optimization - Gradient Descent

Randomly pick an initial (𝑤0, 𝑤1)

𝑤0

𝑤1

MIT Course: MIT 6.S191:  © Alexander Amini and Ava Soleimany



Loss Optimization - Gradient Descent

Compute gradient and move towards negative gradient direction

𝑤0

𝑤1

MIT Course: MIT 6.S191:  © Alexander Amini and Ava Soleimany



Loss Optimization - Gradient Descent

Repeat until convergence

𝑤0

𝑤1

MIT Course: MIT 6.S191:  © Alexander Amini and Ava Soleimany



Loss Optimization - Gradient Descent

1. Initialize weights

2. Loop until convergence:  

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights



Loss Optimization - Gradient Descent

Question 1: How to set initial weights?1. Initialize weights

2. Loop until convergence:  

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights



Loss Optimization - Gradient Descent

1. Initialize weights

2. Loop until convergence:  

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Question 2: How to compute  gradient? 

Question 1: How to set initial weights?



Loss Optimization - Gradient Descent

𝜂: Stepsize (Learning Rates)

Question 1: How to set initial weights?

Question 2: How to compute  gradient? 

1. Initialize weights

2. Loop until convergence:  

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Question 3: How to choose the stepsize?



Loss Optimization - Gradient Descent

Question 4: When to stop?

𝜂: Stepsize (Learning Rates)

Question 1: How to set initial weights?

Question 2: How to compute  gradient? 

1. Initialize weights

2. Loop until convergence:  

3. Compute gradient,
𝜕𝐽(𝑊)

𝜕𝑊

4. Update weights, 𝑊𝑡+1 ← 𝑊𝑡 − 𝜂
𝜕𝐽(𝑊)

𝜕𝑊⊤

5. Return weights

Question 3: How to choose the stepsize?



Questions?
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