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Artificial Neural Network

T y.
— A network of artificial neurons that - I/ Dendrites <""
mimics real biological neural networks wdese X ’ X
« Each has a body, axon, and many dendrites Q 4 |
« A neuron can fire or rest / Ry Aron terminals
- Athreshold to activate (fire) 4 Cellbody
— Perceptron (Frank Rosenblatt, 1956) 1 W,

* Fundamental building block
of deep learning

What is Perceptron? Xy T
. at is Perceptron*
* How is it defined? W/> X — /S

« Build deep NN from X2 w
a Perceptron

A



The Perceptron - A single Neuron

Linear combination
1 Output of inputs

Wy l 1

X1 \ 5} =J9 ( xiWi)
W, X — ya 57'
/ Non-linear Bias

activation function

Binary Classification:
Inputs  VVeights Sum  Non-Linearity Output
(x4, ..., x,y) feature of a data
y € 10,1]: probability belongs to the positive class



The Perceptron
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where: X = : and W =
Inputs  VVeights Sum  Non-Linearity Output Tom




The Perceptron
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Inputs  VVeights Sum  Non-Linearity Output




Activation Functions

Linear activation function:
= gla) =a

= Correspond to linear regression 30

2.5F T — T — ]

2.0 A —— R e A ]
1| e S— e ]
e —
ot ]
0.0f e E— SRS o ]
sl - S T H—
S10f s e T— e ]
—15F rrrrrrrrrrrrrrrrrr R ERERERIEE rrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrr
Y S < S R —

_asp R — T ——

-3.0




Non-linear Activation Functions

Sigmoid activation function:

— Squashes the neuron’s output between 0 and 1
exp(a) 1
1+exp(a) 1+ exp(—a)

g(a) =o(a) =

— Always positive and strictly increasing

1= e —

— Naturally suitable for probability /

» Logistic Regression

Wi X
§= Py = 1x) = —SPWo T 2 wiky) pd
1 +exp(wo+ ), wiX;) | " | g l ! !




Non-linear Activation Functions

Hyperbolic tangent (“tanh”) activation function:

L __ exp(a)—exp(—a) _ exp(2a)—1
g(a) o tanh(a) ~ exp(a)texp(—a)  exp(2a)+1

— Squashes the neuron’s output between -1 and 1
— Strictly Increasing

0.0

NiE=
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Non-linear Activation Functions

Rectified linear Unit (RelLU), activation function:

Rectified linear Unit (ReLU), activation function:

— Nair and Hinton (2010)

— Bounded below by 0 (always non-negative)
— Not upper bounded

— Not smooth

— other variants of ReLU ( Leaky RelLU )
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Importance of Activation Function
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Non-linearity
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We want to build a Neural Network to distinguish green vs red points
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More complex neural networks

Non-linearity allows us to

Linear activation function produce

approximate complex functions

linear decision boundaries



The Perceptron:Simplified

Inputs  VVeights Sum  Non-Linearity Output



The Perceptron:Simplified

Inputs  VVeights Sum  Non-Linearity Output




Single Output Perceptron

14%)
2

> Y
>
Xm

m
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What if we have multi-output y; and y,?



Multi Output Perceptron

X1 . m
Vi =9wg, + _lein)
=
X2 = m
V2 =gWwpy + _leiWi,z)
=
Xm

m
Output ; = g(Wo,1 + E xiwi,))
1=



Extend to Single (Hidden) Layer Neural
Network

X1
Y1
X2
9,
xm
Z, = g( _|_ Z X, WL(;)) (1) Indicates the 1st layer
(1) (1) e

—g(Woz -I—X1W12 T XoWy 5 X Wy 5



Single (Hidden) Layer Neural Network

1 Parameters to be learned
Z1 w=mwo® w?)
X1
Z9 V1
X2
Z3 Vo
9%
Zd
Inputs Hidden Final Output

= g(wy; + wa(l)) D= gwys) + ZZ w o)
]_



Single (Hidden) Layer Neural Network

Z1
S ATE wo
Z9 Y1
2
Z3 Y2
Xm,
Zqg
Inputs Hidden Final Output

= g(wy; + Z xw, ) D = g(wgy) Z @)y



Single (Hidden) Layer Neural Network

Z1
S ATE wo
Z9 Y1
X2
Z3 V2 - |
Activation functions
Xm can be different
_Z l in different layers
Inputs Hidden Final Output

=g(w,; + Z xw, ) D = g(wgy) 2 @)y



Two-Layer Neural Network

w® w2 w®
;O
X1 2
/O 9
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Zd1
Inputs Hidden Hidden Output

Layer | Layer 2



Two-Layer Neural Network

Inputs Hidden
Layer |

Hidden
Layer 2

w®
A
Y2
Output



Multi-Layer (Deep) Neural Network

21(1) zfz) Zig) Z£4)
X1
251) Z§2) ng) Z§4)
v
(1) (2) 3 4
3 Z3 Z?E : Z?E :
X,
(1) (2) (3) (4)
Z4, Z4, Z4, Z4,

Inputs Hidden | Hidden 2 Hidden 3 Hidden 4



Deep Neural Network (DNN)

Zy
X1
k A
Zé ) V1
xz
(k) a
Z3 Y2
Xm
(k)
Zg,
Inputs Hidden Output
dr—1
(k) _ (k) (k—=1) (k)
z; = g(WO,J- + E,l Z Wy



Feed-forward Networks and Backpropagation

Feed-forward

Zl(l) Z£2) Z£3) Z£4)
X1

Zgl) Z§2) Zég) Z§4) 5;1
”

Z?()l) Z:,SZ) ZPEB) Z§4) Y2
X

(1) (2) (3) (4)

24, Zq, Z4, Z4,

Inputs Hidden | Hidden 2 Hidden 3 Hidden 4 Output

How to learn the weights?



Feed-forward Networks and Backpropagation

Feed-forward

>

Zl(l) Z£2) Z£3) Z£4)
X1

Zgl) Z§2) Zég) Z§4) 5;1
”

Z?()l) Z:,SZ) ZPEB) Z§4) Y2
X

(1) (2) (3) (4)

24, Zq, Z4, Z4,

Inputs Hidden | Hidden 2 Hidden 3 Hidden 4 Output
<

How to learn the weights? Backpropagation



Example Problem

Will | pass the class?

— Let’s start with a simple two-feature model

* x; = Number of lectures you attend
* X, = Hours spent on the final project



Example Problem: Will |l pass the class?

X = Hours
spent on the
final project
Legend
. Pass
@ Fri

X1 = Number of lectures you attend



Example Problem: Will |l pass the class?

X = Hours
spent on the
final project
Legend
. Pass
@ Fri

X1 = Number of lectures you attend



Initialization

Initialize the network to realize the first feed-forward pass

= Step 1: Initialize W = (W™, W)

N
N
<



Initialization

Initialize the network for the first feed-forward pass

= Step 1: Initialize W = (W™, W)

Z1
X1
Z7
X2
Z3
w) = 0.1 wy = 0.1

— For example, set all weights to 0.1

<



Feed-forward

Data Point: “1
| ~ X1
x!1l =14,5] Zy
L x,
Z3
w® =01 w® =01

l;_] l"]

<



Feed-forward

0 1 1
Z1 =4 (Wé}l) + x1W1(,1) + szz(,l))

Zq
| - 4
x1 =14,5] Z2 iy =
L. §
Z3



Feed-forward

0 1 1
Z1 =4 (Wé}l) + x1W1(,1) + szz(,l))

= ReLU(0.1+4 x 0.1 +5x 0.1) = ReLU(1) = 1.

Zq
| - 4
x1 =14,5] Z2 iy =
L. §
Z3



Feed-forward

0 1 1
Z1 =4 (Wé}l) + x1W1(,1) + szz(,l))

= ReLU(0.1+4 x 0.1 +5x 0.1) = ReLU(1) = 1.

1 Wi(j) = 0.1

o 2 2 2 2
y=g (Wé}l) + 21W1(,1) + zzwz(,l) + Z3W§,1))

= ReLU(0.4) = 0.4



Feed-forward




Model Assessment - Quantifying Loss

x(D = l4 5] Predicted: 0.4
S Xo Actual: 1

loss( f(x11; w), YUy

Predicted Actual




Model Assessment - Quantifying Loss

x(D = l4 5] Predicted: 0.4
S Xo Actual: 1

loss( f(x11; w), YUy

Predicted Actual




Model Assessment—-Empirical Risk

The empirical Risk measures the total loss over the training dataset

4 5 - “1
2 2
X = le 8 Zy
: x2
T Zs

f(x)
0.4 ]
0.25
0.55

min J(W) = % g}l loss(f(X[i]; w), y[i])

Predicted

Actual




Model Assessment—-Empirical Risk

The empirical Risk measures the total loss over the training dataset

TN
oo N U

Also known as: .
* Objective function min

 Cost function

Z1 _f (x)_
0.4
X
1 . 0.25
Z2 Y 0.55
x2 :
Z3 E.

1 n . .
Jw) =~ % loss( f(X!d; w), vl
=1

Predicted Actual




Quantifying Loss - Binary Classification

= 0/1 Loss: loss(Y, f(X)) = 1ly.rx)
— loss = 0 when correctly classified, 1 when misclassified
— Intuitive but hard to train

min J(W) = % g}l loss(f(X[i]; w), y[i])

Predicted Actual




Quantifying Loss - Binary Classification

= 0/1 Loss: loss(Y, f(X)) = 1ly.rx)
— loss = 0 when correctly classified, 1 when misclassified
— Intuitive but hard to train

= Binary Cross Entropy Loss: loss(Y, f(X)) = —Ylog f(X) — (1 —Y) log(1 — f(X))
— measure of the difference between two probability distributions
— Can be used when output a probability from 0 to 1

min J(W) = % '75:1 loss(f(X[i]; w), y[i])

Predicted Actual




Classification: Binary Cross Entropy Loss

Using Binary Cross Entropy Loss for binary classification

- . Z1 _f (x)_ 7
4, 5 X 0.4 |
y = | 2?2 . |o2s| |0
6, 8 Z2 Y loss |
: : xz : :
i i Zs ] L

min J(W) = % g}l —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted



Classification: Binary Cross Entropy Loss

-

True label —log(f)

0.5

f f

min J(W) = % i —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted



Classification: Binary Cross Entropy Loss

True label —log(f)

Hope —log(f) to be small
such that f isclose to 1 0.5

f

min J(W) = % _i —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted



Classification: Binary Cross Entropy Loss

True label —log(f}] True label —log(1 - f
ylil =1 ylil =0

Hope —log(1 — f) to be small

Hope —log(f) to be small such that f to be close to 0

such that f is close to 1

min J(W) = % i —YHlog F(XxEL W) — (1 — vH) log(1 — (XL W)

Actual Predicted Actual Predicted



Classification: Binary Cross Entropy Loss

* Binary Cross Entropy Loss
loss = =Ylogf(X;W)—(1—-Y)log(1— f(X;W))
= Vectorize True Labelas (Y;,Y,): Y,=YandY,=1-Y

= Prediction: ¥, = f(X;W) versus Y, =1— f(X; W)
loss = —Y;log¥V; — Y, log¥,

Extend the definition Multi-Class?



Classification: Multi-class Cross Entropy
Loss

Binary Cross-entropy loss = —Y;log¥V, — Y, log¥,

K Classes: loss=— ) Y, log(?k)
k=1,...K

Vectorize Y = (Y, Y,,Y5,..)T:  loss = —YTlog(¥)

The true label vector ., y;, = 1. How to make sure )., 9, = 1?

Cross-Entropy
Loss

e A

— Apply a Softmax operator to the output { \
S Softmax } {

— Use it as the activation
function of the last layer exp(sy)

— When no hidden layer: logistic regression Yk = S exp(sy)




Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers

_ _ Z4
4, 5 X1
vy = |2 2 p
6, 8 2
: X9
N | Z,

min J(W) = %i loss( (X' w), vl

Predicted

Actual

\

)

J&
30 90
80 20
85 95

Final C;r'ades
(percentage)



Regression: Mean Squared Error Loss

Used with regression models that output continuous real numbers

(F(x10;w) — yld)’

Predicted

Actual

\

)

J&
30 90
80 20
85 95

Final C;r'ades
(percentage)



Loss Optimization

We want to find the network weights that achieve the lowest loss

loss( (Xl w), ylih

W — {W<1)7W(2>’...}

W* = argmin J(W) =—
7%

n

l

Remember:
Our loss is a function of the network weights!



Loss Optimization - Gradient Descent

W* = argmin /(W)
W

J (w()awl) <

Wy 0.1 s 8 #
MIT Course: MIT 6.5191: © Alexander Amini‘and Ava SoleinYany



Loss Optimization - Gradient Descent

Randomly pick an initial (wy, wy)

J (’LU(),’LUl) e

Wy 0.1 s 8 #
MIT Course: MIT 6.5191: © Alexander Amini‘and Ava SoleinYany



Loss Optimization - Gradient Descent

Compute gradient and move towards negative gradient direction

J (w()awl) <

Wy 0.1 s 8 #
MIT Course: MIT 6.5191: © Alexander Amini‘and Ava SoleinYany



Loss Optimization - Gradient Descent

Repeat until convergence

J ('LUO,’LUl)




Loss Optimization - Gradient Descent

A o

Initialize weights

Loop until convergence:

. oJj(W)
Compute gradient, pom
Update weights, W' « Wt —p (;]V(VM-/r)

Return weights



Loss Optimization - Gradient Descent

Initialize weights Question 1: How to set initial weights?

Loop until convergence:

oJj(Ww)
ow

Update weights, Wt « Wt —p

Compute gradient,
aJj(W)
owrT

A o

Return weights



Loss Optimization - Gradient Descent

Initialize weights Question 1: How to set initial weights?
Loop until convergence:

: aJj(w S o
Compute gradlent, ]ai/v) Question 2: How to compute gradient:

ajw)
owrT

Update weights, Wt « Wt —p

A o

Return weights



Loss Optimization - Gradient Descent

Question 3: How to choose the stepsize?

Update weights, Wt « Wt —n

owrT
Return Weights n: Stepsize (Learning Rates)

1. Initialize weights Question 1: How to set initial weights?
2. Loop until convergence:

3. Compute gradient, a]aLmVl/) Question 2: How to compute gradient?
A W)

5.



Loss Optimization - Gradient Descent

Question 3: How to choose the stepsize?

Update weights, Wt « Wt —n

owrT
Return Weights n: Stepsize (Learning Rates)

1. Initialize weights Question 1: How to set initial weights?

2. Loop until convergence:  Question 4:When to stop?

3. Com pute gradient M Question 2: How to compute gradient?
' ' oW

A aJj(W)

5.



ks!

Questions?
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