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Turing Test (1950)

= Alan Turing, Computing Machinery and Intelligence (1950)

— | propose to consider the question, “Can machines think?”

Turing test

During the Turing test, the human questioner asks a series of questions to both respondents.
After the specified time, the questioner tries to decide which terminal is operated by the
human respondent and which terminal is operated by the computer.

B QUESTION TO RESPONDENTS B ANSWERS TO QUESTIONER

Computer Human Human
respondent questioner respondent
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I.—.COMPUTING MACHINERY AND
INTELLIGENCE

By A.M. Turing

1. The Imatation Game.

I ProPOSE to consider the question, ¢ Can machines think ?°’
This should begin with definitions of the meaning of the terms
‘machine > and  think . The definitions might be framed so as to
reflect so far as possible the normal use of the words, but this
attitude is dangerous. If the meaning of the words ‘ machine ’
and ‘ think * are to be found by examining how they are commonly
used it is difficult to escape the conclusion that the meaning
and the answer to the question, * Can machines think 2’ is to be
sought in a statistical survey such as a Gallup poll. But this is
absurd. Instead of attempting such a definition I shall replace the
question by another, which is closely related to it and is expressed
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Recent Development: OpenAl GPT Series

GPT = Generative Pre-trained Transformer

» state-of-the-art language processing artificial intelligence system developed by OpenAl

Tgn' Task
Pradiion cm Model Name n‘p:u';uu: nluyvrs dmotlcl Mheads dhcud Batch Size Lcaming Rate
I [} GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
Layer Norm GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
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Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.
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Explain reinforcement

learning to a 6 year old.

$
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4

We give treats and

punishments to teach...

https://openai.com/blog/chatgpt/

Step 2

Recent Development: ChatGPT

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

7 “~

x.
Explain reinforcement
learning to a 6 year old.

0 o

In reinforcement Explain rewards.
learning, the

agentis.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO modelis
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A~

Write a story
about otters.

Sk

https://chat.openai.com/chat



Recent Development: ChatGPT

Please write a 150-word essay about artificial intelligence and machine
learning.

Artificial intelligence (Al) is the broad field of building computer systems that can perform tasks we usually associate
with human intelligence, such as understanding language, recognizing images, planning actions, and making
decisions. Machine learning (ML) is a major approach within Al that enables systems to learn patterns from data
instead of relying only on hand-written rules. For example, an ML model can study thousands of medical scans to
help detect disease, or analyze past purchases to recommend products. Recent breakthroughs, especially in deep
learning, have made Al tools far more capable, but they also raise important questions about privacy, bias, and
accountability. Because models learn from historical data, they can absorb and amplify existing inequalities unless
carefully designed and tested. Used responsibly, Al and ML can improve healthcare, education, and transportation,
while automating repetitive work. The challenge is to pair technical innovation with thoughtful governance so these
powerful technologies serve people fairly and safely.
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GPT starts to have reasonable mathematical
reasoning skills

On Learning-Curve Monotonicity for Maximum
Likelihood Estimators

Mark Sellke Steven Yin

Abstract

The property of learning-curve monotonicity, highlighted in the recent papers [VML19,
LVM19, VL22], describes algorithms which only improve in average performance given
more data, for any underlying data distribution within a given family. We establish
the first nontrivial monotonicity guarantees for the maximum likelihood estimator in
a variety of well-specified parametric settings. For sequential prediction with log loss,
we show monotonicity (in fact complete monotonicity) of the forward KL divergence
for Gaussian vectors with unknown covariance and either known or unknown mean,
as well as for Gamma variables with unknown scale parameter. The Gaussian setting
was explicitly highlighted as open in the aforementioned works, even in dimension 1.
Finally we observe that for reverse KL divergence, a folklore majorization trick from
[MP65] yields monotonicity for very general exponential families.

All results in this paper were derived by variants of GPT-5.2 Pro. Humans did not
provide any proof strategies or intermediate arguments, but only prompted the model
to continue developing additional results, and verified and transcribed its proofs.

220v2 [math.ST] 24 Dec 2025



Recent Development: Image Generation

http://www.dailymail.co.uk/sciencetech/article-3214634/The-algorithm-learn-copy-artist-Neural-network-recreate-snaps-style-Van-Gogh-Picasso.html




Recent Development: Stable Diffusion

Stable Diffusion + Stable Diffusion Demo

Stable Diffusion is a state of the art text-to-image model that generates images from text.
For faster generation and AP| access you can try DreamStudio Beta

A high tech solarpunk utopia in the Amazon rainforest

An image generated by Stable Diffusion based
on the text prompt "a photograph of an
astronaut riding a horse"

Developer(s) StabilityAl
Initial release August 22, 2022

https://huggingface.co/spaces/stabilityai/stable-diffusion



Machine Learning

* One of the major goals and concepts in Artificial Intelligence.

* The study of computer algorithms that improve automatically by the use of
data.

— Instead of specifically programming them how to solve the task

« Traditional Programming:

Input Data » Program

 Machine Learning:

Input Data Output




Statistical Machine Learning—Classical ML

Prediction from Data

Input Data » Program Also include classification

Inference from Data

Modeling: making

- Statistics: interpretability,
assumptions on the program

hypothesis testing

Probabilistic model, or other
Hypothesis about the data

Training: f

Using training data to find best
parameters in the model you assumed




Statistical Machine Learning — Classical ML

« (Classical Machine Learning and Data Mining;

Prediction from Data

Input Data » Program

Inference from Data

Modeling: making
R assumptions on the program

Gareth James
Daniela Witten

Trevor Hastie

Fot Thon | Probabilistic model, or other Rk

Jerome Friedman

Hypothesis about the data

Data Mining, Inference, and Prediction

with Applkation; inR Trainin g. f

Using training data to find best
Qoeges parameters in the model you assumed
http://faculty.marshall.usc.edu/gareth-james/ISL/

https://web .stanford.edu/~hastie/ElemStatLearn/



- Classical ML

Prediction from Data

Input Data » Program

Inference from Data

Statistical Modeling: making
probabilistic/statistical assumptions on the program

Care a loton
interpretability:

e.g. whether effects
are significant

Probabilistic model, or other

Example: Logistic regression: Hypothesis about the data
1. Assume a probabilistic model
1 Training: f
PY=1)= . . .
1+ exp(—X'p) Using training data to find best

2. Find best B that fits the training data parameters in the model you assumed




Machine Learning — Classical ML

More complex input data,
like image, video, text, etc

Input Data

Focus more on the prediction

» Program

/ Prediction from Data

Using more complex models
regardless of interpretability

Care less on the interpretability

Model

Training: f

Using training data to find best
parameters in the model you assumed




Machine Learning — Classical ML

Spend more efforts in feature engineering to Focus more on the prediction

More complex input data, capture useful information from complex data
like image, video, text, etc / Prediction from Data
Feature
Input Data : » Program
P Extraction 5

Using more complex models

Care less on the interpretabilit
regardless of interpretability P y

Model

Training: f

Using training data to find best
parameters in the model you assumed




ML on image data
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ML onimage data - Deep Learning
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ML with feature engineering

* Face recognition: Input Data is more complex

(21,29, .., Zg)

Roundness of face
Dist between eyes
Nose width

Eye socket depth
Cheek bone structure
Jaw line length

...etc.

»

CLASSIFIER
ALGORITHM

SVM

Random Forest
Naive Bayes
Decision Trees
Logistic Regression
Ensemble methods

- Mark




DL vs. Classical ML

Classic
Machine
Learning

Deep
Learning

(21,29, .., Zg) CLASSIFIER
R ALGORITHM

oundness of face
Dist between eyes SVM
Nose width Random Forest Mark
Eye socket depth Naive Bayes
Cheek bone structure Decision Trees
Jaw line length Logistic Regression
..etc. Ensemble methods

NEURAL NETWORK
Hidden Layer 1 Hidden Layer 2 Hidden Layer 3
Input Layer
Mark

Millions of parameters

r




DL vs. Classical ML

TML

Deep

feature engineering modelling

feature
modelling

engineering

Figure 1-13 Feature engineering—the transformation of raw data into
thoughtfully-transformed input variables—often predominates the application of
traditional machine learning algorithms. In contrast, the application of deep
learning often involves little to no feature engineering, with the majority of time

spent instead on the design and tuning of model architectures.

Source: Krohn et al. DL Illustrated




DL vs. Classical ML

The idea of deep learning is the ability of the multi-layer neural networks to learn hierarchical
representations of features

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure



ARTIFICIAL INTELLIGENCE

Any technique which enables
computers to mimic human MACH'N E LEARN'NG

behavior Al techniques that give

computers the ability tolearn DEEP LEARNING

without being explicitly _
programmed to do so A subset ot ML which make

the computation of multi-layer
neural networks feasible

1950's  1960’s 1970’s 1980’s  1990's  2000’s  2010s

ORACLE"

Copyright @ 2018, Oracle and/er its affillates. All rights reserved. |



The Rise of Deep Learning

AlCanHelpIn Predicting Cryptocurrency
Value

‘Deep VOice, software Let There Be Sight: How Deep Learning Is Helping the Blind "See’
Can Clone Anyone's
Voice With Just 3.7

B  seconds of Audio
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Neural networks everywhere

r consumption by up to 95 percent, making

New chip reduces neural networks
them practical for battery-powe

by Ky Digital Reporter - W

After Millions of Trials, These Simulated Humans
Learned to Do Perfect Backflips and Cartwheels

‘ Coerge duarey

R
Automation And Algonthms

u & De-Risking Manufacturing With
ANy B Artificial Intelligence
. f b Researchefs iNtréduce ar dt.:ep learning method X <
rpodiias T = that copverts mono audio recordings into 3D ®, - TWEET This
Googles Deelend aces protein folding bR ds usmg Midoostencs Tha e of Al ' s pelngand
ack

2 ¥ manufac

By Robert £ Service



Deep learning success

* Speech, Images, Video
— Simple tasks (classification, localization) almost done on super-human level

— Complex tasks (semantic segmentation, style transfer, image generation, ...) are in progress with
exciting examples

« Text/Natural Language Processing (NLP) [a bit behind speech/images]
— Some good basic technologies are in use (word embeddings, machine translation, etc)
— Even more in progress (text generation, Q&A, etc)

« Reinforcement Learning (RL)
— Great achievements exist: Go playing, Atari playing, more to come in business

* Aot of other research

— One-shot learning (very few data), multi-modal and multi-task learning, transfer learning,
unsupervised learning, and many many more



Example: Image Colorization




Example: Game of Go: Computer-
Human 4:1

ALPHAGO\’ ® o I
0:10:2) 09 ¢t I <@uBER (- LEE SEDOL
I “‘- [ \

« 00:07:00

eCeo

O O
"
@ 70

®0

AlphaGo

Google DeepMind




Example: Self-driving Cars

« Almost all automobile industry as well as tech giants (Google, Apple, NVidia,
Uber, Tesla, Volvo, Mercedes-Benz — pioneered by Ernst Dickmanns in 1980s)
develop their own autonomous car.

* Automobiles will become really auto-mobile.

4 fromt poning
$ rear pointing platform
f=24 mm f=7.5mm

o; Tele a6 » 2
15 angle —
At distance Ly ~ 20 m (~ 60 m),

the resolution is 5§ cm/pixel




Example: Image generation by text

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

o

Figure 1. Examples of generated images fro (iEsiiis
Left: captions are from zero-shot (held out g
text. Right: captions are from the training set



Deep Learning -> Business and Industry Transformation

Sales
— “Next product to buy” recommendations

Banking

— Automated Loan Processing Systems

Retail: faster and better shopping services
— Robotic assistants in retail stores

— Use of biometrics (facial recognition, fingerprints)
— Al based predictive analytics on demand

Health Care

— Al diagnostics via analysis of medical data
— Robot-assisted surgery




Hype of ML/ DL in Financial Industries

mml CITADEL

Li Deng Pedro Domingos

U of Washington

3 ).

Manuela Veloso Yoram Singer
Carnegie Mellon Princeton & Google



Potential Economic Impact

* Productivity growth
— Substitution, augmentation & contributions to labor productivity

= Al adoption could raise global GDP by $13T by 2030
— 1.2% of additional GDP growth per year

Jobs displaced Jobs created
by 2030 by 2030

400-800mi 999-890 mi

[Source: McKinsey Global Institute.)



Danger of Al and ML: Discrimination & Fairness

Discrimination and Bias: “man is to king as woman is to x”

Al learning unhealthy stereotypes

* Man : Woman as Father : Mother
* Man : Woman as King : Queen

+ Man : Computer programmer as Woman : Homernraker
Computer programmer

4 I |
ymemaer
Man: (1,1) 4 : (
)\ 2 i 1% 4 4
Woman %)
Computer programmer: (3,2) 3T
Woman: (2.9) 2+ Computer programmer
, i

Homemaker: (4,4) Mim .

1 1 I ’

1 2 3 4

[Bolukbasi et al. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.]

https://www.microsoft.com/en-us/research/blog/what-are-the-biases-in-my-data/

https://research.aimultiple.com/ai-bias/



Danger of Al and ML: Attacks

Adversarial attacks of Al

= A sticker near a banana

Classifier Input

——

e — -
. -~ =
. - -
- > - - =
- ™~
X

10

08

06

04

02

0o

banana

Classifier Output

slug

orange

snail



Danger of Al and ML: DeepFake

Generative Adversarial Networks, GAN

An example of deepfake technology: in a scene
from Man of Steel, actress Amy Adams in the
original (left) is modified to have the face of
actor Nicolas Cage (right)

SCIgen - An Automatic CS Paper Generator

About Generate Examples Talks Code Donations Related People Blog

About

SCIgen is a program that generates random Computer Science research papers, including graphs,
figures, and citations. It uses a hand-written context-free grammar to form all elements of the
papers. Our aim here is to maximize amusement, rather than coherence.

One useful purpose for such a program is to auto-generate submissions to conferences that you
suspect might have very low submission standards. A prime example, which you may recognize
from spam in your inbox, is SCI/IIIS and its dozens of co-located conferences (check out the very
broad conference description on the WMSCI 2005 website). There's also a list of known bogus
conferences. Using SCIgen to generate submissions for conferences like this gives us pleasure to
no end. In fact, one of our papers was accepted to SCI 2005! See Examples for more details.

We went to WMSCI 2005. Check out the talks and video. You can find more details in our blog.

Also, check out our 10th anniversary celebration project: SCIpher!

Generate a Random Paper

Want to generate a random CS paper of your own? Type in some optional author names below,
and click "Generate".

Author 1: |
Author 2:
Author 3: |
Author 4:
Author 5:

§DEPARTMENT OF S¥STE]
CYBERNETICS & INFORMA

T

Automatically generate fake
reviews or even academic
papers SClgen: Just enter
the author's name and the
computer can help you
generate an "SCl-level"
computer paper.


https://en.wikipedia.org/wiki/Man_of_Steel_(film)
https://en.wikipedia.org/wiki/Amy_Adams
https://en.wikipedia.org/wiki/Amy_Adams
https://en.wikipedia.org/wiki/Nicolas_Cage
https://en.wikipedia.org/wiki/Nicolas_Cage

What drives deep learning to be successful?

B | pen s T
2= L) Egn e,

Deep Architecture Big Data Computing power



Deep Neural Networks

* Frank Rosenblatt’'s Perceptron: 1956
— Trained by back-propagation: Seppo Linnainmaa (1970) Paul Werbos (1974)

: - ~O
Z w i X i

n
i—0 sl { 1 1fi§,0wl- ,\7,->O

0 otherwise




Deep Neural Networks

« Convolution Neural Network (CNN)
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Deep Neural Networks

Deeper Convolutional Neural Networks
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Big Data

 MNIST
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https://gluon-cv.mxnet.io/build/examples_datasets/imagenet.html
https://gluon-cv.mxnet.io/build/examples_datasets/imagenet.html
https://gluon-cv.mxnet.io/build/examples_datasets/imagenet.html

Computing Power: GPU

Theoretical Peak Performance, Single Precision

GFLOP/sec
=
(5]

: INTEL Xeon CPUs —he— -
; NVIDIA GeForce GPUs —jl—
: AMD Radeon GPUs —()— |
INTEL Xeon Phis =t |
1 L 1 L

2008 2010 2012 2014 2016
End of Year




Computing Power: Google TPU

« (May 18, 2016) Google announced
Tensor Processing Unit (TPU)

— a custom ASIC built
specifically for machine
learning — and tailored
for TensorFlow




More Data + More Power

. C3: 1. maps 16@10x10
INPUT sc&g:éusm maps S4: 1. maps 16@35x5

1998

LeCun et al.

Gausslar
Convolutions Subsampling Convolutions  Subsampling Full connection
# of transistors # of pixels used in training

2012 NNEHERE -
a8 \ o 197 192 128 204,

; L 57 128 R oy

J AN, 13 13
Krizhevsk e N |
et al. N[t T I\

\~P° 192 192 128 Max
24\llstrig Max 128 Max pooling 2 8
of 4 pooling pooling
# of transistors GPUs # of pixels used in training
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Deep learning Software

1 |
TensorFlow O PyTo rch

| Facebook . .
Google i ocaarcH Public Cloud Adoption

@ @Xnet C affe oof All Rpondonts

AWS
KeraS Amazon

Francois Chollet
(now at Google)

Azure

Google Cloud

VMware Cloud on AWS

IBM Cloud

Cloud platforms ......

AlibabaCloud EIRZA

B Currently use

m Experimenting

® Plan to use

Source: RightScale 2019 State of the Cloud Report from Flexera



. Keras

Simple. Flexible. Powerful.

tensorflow keras
tensorflow.keras layers

vision_model - keras.applications.ResNet50()

video_input - keras.Input(s/ 100, None, None, 3))
encoded_frame_sequence layers TimeDistributed(vision_model) (video_input)
encoded_video - layers.LSTM(256) (encoded_frame_sequence)

question_input - keras.Input(s/ 100 dtype="'int32')
embedded_question - layers.Em ng (10000 ~)(quest10n input)
encoded_question - layers.LSTM(2: )(embedded_questlon)

merged - keras.layers. (uta:trnuta([encoded _video, encoded_question])

output )00, activation-'softmax')(merged)

video_ga_| model keras WodLL( puts-[video_input, question_inputl],
utputs-output)

Deep learning for humans.

Keras is an API designed for human beings, not machines.
Keras follows best practices for reducing cognitive load: it

offers consistent & simple APlIs, it minimizes the number of
user actions required for common use cases, and it provides
clear & actionable error messages. It also has extensive
documentation and developer guides.




Colab

« Colab is a Python development environment that runs in the browser using
Google Cloud.

— https://colab.research.google.com/

— Like Jupyter Notebook (iPython) , but you don't have to install anything on your computer

or face issues of installation errors

* https://www.youtube.com/watch?v=inN8seMm7 Ul


https://colab.research.google.com/
https://colab.research.google.com/

Machine Learning Overview
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Predict —
The class of digit “7”

Key Terminologies

— Labels: Y

— Features: X

— Examples: (X,Y)
— Models: f: X ->Y



Supervised Learning
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“Digit 3"
=  “Digit7”

Market information :> Share Price at t
up to time t-1 524.50

[Task: Given X € X, predict Y € . ]




Supervised Learning - Regression

Feature Space X Label Space )/
Market information I:> Share Price at t
up to time t-1 “$24.50”

Expression level
(Gene, Drug) ::) “0.01”

Continuous Labels

ML Models:

Linear Regression
(Ordinary Least Square /
Ridge / Lasso)
Regression Tree

Boosting
Neural Network



Supervised Learning - Classification

Feature Space X Label Space )/
“Sports”
Words in a document : ,,Ne.ws Y
Science
ML Models:
s Logistic Regression
gB IEE 377~=gggggggg§§§§§§:a;;;;E ”D' i+ 3” K-NearESt'NeigthrS
= I8! Support Vector Machine
Handyritten dighs? = “Digit 7 e Bayes
S Classification Tree

: Boosting
Discrete Labels Neural Network




Unsupervised Learning

* Aka “learning without a teacher”

Feature Space X

Words in a document —»  Worddistribution
(Probability of a word)

The goal is more diverse

[ Task:  Given X € &, learn f(X). ] Can even be served as a pre-
processing step for supervised learning




Unsupervised Learning — Density
Estimation

* Population density

f
e

Inhabit. per SgMile (1920

O less than 1
01 ta 15
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O 30 to 45

O 50 to S5

m 100 to 355
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Unsupervised Learning — Clustering

[Goldberger et al.]

e [Tt

« Group similar things e.g. images

— Methods | |
* Hierarchical = 4 7% B
Clustering ERmes e
= = B BS L=

« K-means

'




Unsupervised Learning - Embedding

[Saul & Roweis ‘03]

* Dimension Reduction

— Images have thousands or
millions of pixels.

— Can we give each image a
coordinate, such that similar
images are near each other?

— Methods
 PCA
« LDA
* Manifold Learning
« Autoencoder




Machine Learning Tasks and Models

Linear Regression

Logistic Regression

Supervised : N Neahh
Learning | -Nearest-Neighbors

Naive Bayes

Decision Tree

- Gradient Boosting

Neural Network

: Principle Component Analysis

[ K-means J




Machine Learning Tasks and Models

Linear Regression

Regression Logistic Regression

p . K-Nearest-Neighbors

Classification Naive Bayes

o J

- ~ Decision Tree
Clustering Gradient Boosting

o J
Dimension ) Neural Network
Reduction ) [ Principle Component Analysis }

[ K-means }




Machine Learning Tasks and Models

[ Regression J

Classification

~

[ Clustering

J

. . )
[ Dimension

Reduction |

[ Linear Regression ]

Logistic Regression
K-Nearest-Neighbors
Naive Bayes
Decision Tree
Gradient Boosting

Neural Network

[ Principle Component Analysis }

[ K-means }




Model Assessment : Performance Measure

« Supervised Learning

Task: Given X € X, predict Y € ). X - test data

= Construct prediction rule f: X — Y

Performance:

loss(Y, f(X)): Measure of similarity between true label Y and prediction f(X)

Classification: Handwritten digits

X 4 £ loss(Y, f(X)) | = Lyzr)

“Digit 7”7 “Digit 1” 1 0/1 loss

“Digit 7” 0



Model Assessment : Performance Measure

« Supervised Learning

Task: Given X € X, predict Y € ). X - test data

= Construct prediction rule f: X — Y

Performance:

loss(Y, f(X)): Measure of similarity between true label Y and prediction f(X)

Regression: predict stock price

2

X y fX)  loss(Y,f(X)) | =(y—f(x)
Past performance fhare pr”ice “$24.50" 0 Squar'ed loss
and market information $24.50 “$26.00” 5

“$26.10” ?



Model Assessment: True vs. Empirical Risk

* True Risk: Target performance measure E;..;[loss(Y, f(X)]

— Performance on a random test point (X,Y)
— Classification — Probability of misclassification E[1y .| = P(Y # f(X))

— Regression — Mean Squared Error E(Y — f(X))2

n
« Empirical Risk: Performance on training data% Y loss(Y;, f (X))
i=1

n
— Classification — Proportion of misclassified examples. % 2 lyzrxp
i=1

n
— Regression — Average Squared Error % > (o — flx)?
i=1



Overfitting

Is the following predictor a good one?

f(r):{}/; r=X;tori=1,....n

any value, otherwise
What is its empirical risk? (performance on training data)
What about true risk?

Will predict very poorly on new random test point:
Large test error (generalization error)

()

f(z)




Effect of Model Complexity

« If we allow very complicated models/predictors, we could overfit the training

data.

Prediction
Error I\

-

empirical risk =~

fixed # training data

true risk

underfitting Best

Model

overfitting Complexity

Empirical risk is no longer a
good indicator of true risk



How to control model complexity? -
Regularization

Consider linear regression: given n data points (X; € R™,y; € R)

Fit a linear model: V%%%%Z?zl(yi — XiTW)Z

However, it will perform bad when the dimension m is large (model is too complex)

Regularization: min, %Z’lf‘:l(yi — Xl-TW)Z + A - pen(W)

A: regularization parameter, controls the model complexity
pen(W): penalty of W

— Examples: pen(W) = |IW||2 = ,/Zj|Wj|2 ‘

- pen(W) = ||W||1 =Y|lw;| (1;-penalty, Lasso)

» Lasso (l;-penalty) results in sparse solutions — vector with more zero coordinates



How to choose regularization parameters

 K-fold cross-validation

— Randomly create K-fold partition of the dataset.

— Form K hold-out regression/classification function, each time using one partition as
validation and rest K — 1 as training datasets.

— Final parameter is the one that leads to the smallest average validation error

Run 1

Run 2

Run K

.

Total number of examples

Err;(1)

Fi()

Erry,(1)

J2(\)

Fre(N)

Errg (1)

I:I training I:Ivalidation

Find the best A from a list of candidates
(A4, ..., A;) that minimizes

%Z Err, (1)
K




Build ML Algorithms - 5 Useful Tips
by Machine Leaming Yeaming, Andrew Ng

* Rule 1: Biggest drivers of the success

— Data availability & Computational scale

Medium NN

Small NN 1(90.61)'_-.

Traditional
learning algo

Performance

v

Amount of data




Build ML Algorithms - 5 Useful Tips

e Rule 2: Divide your datasets quickly & properly
Training Set Validation Set Testing Set

— Validation and test sets should L) (20%) (20%)

come from the same distribution

« Wrong example: US and India data To train the models To make sure the models To determine the
for validation and China data for test are not overfiting  acuracy of the models

— Validation sets should be /arge enough to detect difference
« Set of 100 examples would not be able to detect a 0.1% difference.
« Meanwhile, split the validation set to Eyeball dev set + Blackbox dev set

— Incorrectly Chosen - Don’t be afraid to change your sets when necessary
 Actual distribution you need to do well on is different from the validation/test sets.
* The metric is measuring something other than what the project needs to optimize



Build ML Algorithms - 5 Useful Tips

* Rule 3: Bias and Variance: The two big sources of error
— ldentifying the bias and variance

 Error rate on the training / validation set
— Tradeoff: Underfitting / Overfitting
— In the modern era: more options

» High avoidable bias

—increase the size of your model
* High variance

—add data to your training set

— proper regularization

—early stopping
« Modify input features / model architecture

a) Standard Neural Net (b) After applying dropout.



Build ML Algorithms - 5 Useful Tips

Rule 4: Utilizing multiple evaluation |METRIC

Classifier Precision Recall
— Tradeoff between Precision / Recall A 9504 0%
2
P = B 98% 85%

recall~! + precision—!

— Trade-off Between accuracy and running time
« Combinations of multiple evaluation metrics
— E.g. Accuracy - 0.5* RT
+ Optimizing + Satisfying Metric
— Set 100ms as acceptable 4 90% 80ms

— Optimize Accuracy . 92% 95ms
c 95% 1,500ms



Build ML Algorithms - 5 Useful Tips

 Rule 5: Iterative Process
— Don't expect it to work first time

— Try out many dozens of ideas before
you discover something satisfactory

— Quickly detect whether to refine
or to discard the idea

3. Experiment



Slide Courtesy and Acknowledgement
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ks!

Questions?
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