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Preface

The importance of linear models

A central goal in statistics is to use data to build models to make inferences about the
underlying data-generating processes or make predictions of future observations. Although
real problems are often complex, the linear model can often serve as a good approximation
to the true data-generating process. Sometimes, although the true data-generating process
is nonlinear, the linear model can be a useful approximation if we properly transform the
data based on domain knowledge.

Moreover, linear models possesses elegant algebraic and geometric properties. They of-
ten admit explicit formulas that provide deep insights into various aspects of statistical
modeling and learning. For more complicated models, such closed-form expressions may
be impossible. Nonetheless, linear models offer intuition for more complicated models. For
example, the double-descent phenomenon—originally observed empirically in deep learning
(Belkin et al., 2019)—can be rigorously examined and proved within the framework of linear
models (Hastie et al., 2022). In our experience, only in rare cases the insights gained from
linear models do not apply to more complicated models.

From a pedagogical perspective, the linear model plays a foundational role and serves
as a building block for broader statistical training. These lecture notes closely follow Ding
(2024). The book is freely available at https://arxiv.org/pdf/2401.00649v2.

R and Python

R is widely used in the statistics community and offers a rich ecosystem of packages for
statistical modeling. Some commonly used datasets are available only in R but not in
Python. For example, the Galton’s dataset can be found in the R package HistData,
but it is not natively available in Python. However, you can access and use datasets from
R packages within Python via the statsmodels library. Specifically, statsmodels provides
the function sm.datasets.get rdataset(), which allows you to directly load datasets from
R packages such as HistData.

Here is an example of how to load the Galton dataset from the HistData package in
Python:

1 import statsmodels.api as sm

2

3 # Load the ’Guerry ’ dataset from the ’HistData ’ R package

4 data = sm.datasets.get_rdataset("GaltonFamilies", "HistData").data

5

6 # Now you can work with the ’data’ DataFrame in Python

7 print(data.head ())

5

https://arxiv.org/pdf/2401.00649v2


6 Preface

Prerequisites and corequisites

These lecture notes assume that the reader has basic training in linear algebra, probability
theory, and statistical inference.
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Introduction and Motivations

This book is about the linear model and its extensions. Before delving into the mathematical
details of specific models, we will briefly provide some motivations for studying statistical
models.

1.1 Data and statistical models

A wide range of problems in statistics and machine learning have the following data struc-
ture:

Unit outcome/response covariates/features/predictors

i Y X1 X2 · · · Xp

1 y1 x11 x12 · · · x1p
2 y2 x21 x22 · · · x2p
...

...
...

...
...

n yn xn1 xn2 · · · xnp

For each unit i, we observe the outcome of interest (also called the response), yi, as well
as p covariates (also called features or predictors), xi1, . . . , xip. We often use

Y =


y1
y2
...
yn


to denote the n-dimensional outcome vector, and

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
...

xn1 xn2 · · · xnp


to denote the n× p covariate matrix, also called the design matrix. In most cases, the first
column of X contains constants 1s.

Based on the data (X,Y ), we can ask the following questions:

(Q1) Describe the relationship between X and Y , i.e., their association or correlation. For
example, how is the patients’ average height related to the children’s average height?
How is one’s height related to one’s weight? How are one’s education and working
experience related to one’s income?

1



2 Introduction and Motivations

(Q2) Predict Y ∗ with new data X∗, based on the old data (X,Y ). In particular, we want to
use the current data (X,Y ) to train a predictor, and then use it to predict future Y ∗

based on future X∗. This is called supervised learning in the field of machine learning.
For example, how do we predict whether an email is spam or not based on the frequencies
of the most commonly occurring words and punctuation marks in the email? How do
we predict cancer patients’ survival time based on their clinical measures?

(Q3) Estimate the causal effect of some components in X on Y . What if we change some com-
ponents of X? How do we measure the impact of the hypothetical intervention of some
components of X on Y ? This is a much harder question because most statistical tools
are designed to infer association, not causation. For example, the U.S. Food and Drug
Administration (FDA) approves drugs based on randomized controlled trials (RCT)
because RCTs are most credible to infer causal effects of drugs on health outcomes.
Economists are interested in evaluating the effect of a job training program on employ-
ment and wages. However, this is a notoriously difficult problem because participation
in the job training program is not randomized in observational data.

The above descriptions are about generic X and Y , which can have many different types.
We often use different statistical models to capture the features of different types of data.
Below we give a brief overview of models that will appear in later parts of this book.

(T1) X and Y are univariate and continuous. In Francis Galton’s1 classic example, X is
the parents’ average height and Y is the children’s average height (Galton, 1886). Let
ŷi denote the “fitted value” of the outcome for unit i with covariate value xi. Galton
derived the following formula:

ŷi = ȳ + ρ̂
σ̂y
σ̂x

(xi − x̄)

which is equivalent to
ŷ − ȳ

σ̂y
= ρ̂

xi − x̄

σ̂x
, (1.1)

where

x̄ = n−1
n∑

i=1

xi, ȳ = n−1
n∑

i=1

yi

are the sample means,

σ̂2
x = (n− 1)−1

n∑
i=1

(xi − x̄)2, σ̂2
y = (n− 1)−1

n∑
i=1

(yi − ȳ)2

are the sample variances, and ρ̂ = σ̂xy/(σ̂xσ̂y) is the sample Pearson correlation coeffi-
cient with the sample covariance

σ̂xy = (n− 1)−1
n∑

i=1

(xi − x̄)(yi − ȳ).

The identity (1.1) is the famous formula of “regression towards mediocrity” or “regres-
sion towards the mean”. Galton first introduced the terminology “regression.”2 Galton

1Who was Francis Galton? He was Charles Darwin’s nephew and was famous for his pioneer work in
statistics and for devising a method for classifying fingerprints that proved useful in forensic science. He
also invented the term eugenics, a field that causes a lot of controversies nowadays.

2The name “regression” is widely used in statistics now. For instance, we sometimes use “linear re-
gression” interchangeably with “linear model.” We also extend the name to “logistic regression” or “Cox
regression.”
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called regression because the relative deviation of the children’s average height is smaller
than that of the parents’ average height if |ρ̂| < 1. We will derive (1.1) in Chapter 2.

(T2) Y is univariate and continuous, and X is multivariate of mixed types. In the R pack-
age ElemStatLearn, the dataset prostate has an outcome of interest as the log of the
prostate-specific antigen lpsa and some potential predictors including the log cancer
volume lcavol, the log prostate weight lweight, age age, etc. Linear regression with
multidimensional covariates will be one of our main focus in this course.

(T3) Y is binary or indicator of two classes, andX is multivariate of mixed types. For example,
in the R package wooldridge, the dataset mroz contains an outcome of interest being the
binary indicator for whether a woman was in the labor force in the year 1975, and some
useful covariates are in the table below:

covariate name covariate meaning

kidslt6 number of kids younger than six years old
kidsge6 number of kids between six and eighteen years old
age age
educ years of education
husage husband’s age
huseduc husband’s years of education

A commonly used model is logistic regression for binary outcomes.

(T4) Y is categorical without ordering. For example, the choice of housing type, single-family
house, townhouse, or condominium, is a categorical variable. A commonly used model
is the multinomial logistic regression for categorical outcomes without ordering.

(T5) Y is categorical and ordered. For example, the final course evaluation at UC Berkeley
can take value in {1, 2, 3, 4, 5, 6, 7}. These numbers have clear ordering but they are not
the usual real numbers. A commonly used model is the proportional odds regression for
ordered categorical outcomes.

(T6) Y represents counts. For example, the number of times one went to the gym last week is a
non-negative integer representing counts. Commonly used models are Poisson/negative-
binomial/zero-inflated regression.

(T7) Y is multivariate and correlated. In medical trials, the data are often longitudinal,
meaning that the patient’s outcomes are measured repeatedly over time. So each pa-
tient has a multivariate outcome. In field experiments of public health and development
economics, the randomized interventions are often at the village level but the outcome
data are collected at the household level. So within villages, the outcomes are correlated.
A commonly used model is the the generalized estimating equation for correlated data.

(T8) Y represent time-to-event outcomes. For example, in medical trials, a major outcome
of interest is the survival time; in labor economics, a major outcome of interest is the
time to find the next job. The former is called survival analysis in biostatistics and the
latter is called duration analysis in econometrics.
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1.2 Why linear models?

Why do we study linear models if many real problems may have nonlinear structures? There
are important reasons.

(R1) Linear models are simple but non-trivial starting points for learning.

(R2) Linear models can provide insights because we can derive explicit formulas based on
elegant algebra and geometry.

(R3) Linear models can handle nonlinearity by incorporating nonlinear terms of covariates,
for example, X can contain the polynomials or nonlinear transformations of the original
covariates. In statistics, “linear” means linear in parameters, not linear in covariates.

(R4) Linear models can be good approximations of nonlinear data-generating processes.

(R5) Linear models are simpler than nonlinear models, but they do not necessarily perform
worse than more complicated nonlinear models. We have finite data so we cannot fit
arbitrarily complicated models.

(R6) Linear models offer insights for more complicated models. In our experience, only in rare
cases the insights gained from linear models do not apply to more complicated models.



2

Simple Linear Regression

Simple linear regression refers to linear regression with a single covariate. This chapter
discusses ordinary least squares (OLS) with a single covariate. It can provide insights into
later chapters because it is the building block of OLS with multiple covariates.

2.1 Ordinary least squares with a univariate covariate

Figure 2.1 shows the scatterplot of Galton’s dataset which can be found in the R pack-
age HistData as GaltonFamilies. In this dataset, father denotes the height of the father
and mother denotes the height of the mother. The x-axis denotes the mid-parent height,
calculated as (father + 1.08*mother)/2, and the y-axis denotes the height of a child.

fitted line: y=22.64+0.64x
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Galton's regression

FIGURE 2.1: Galton’s dataset
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6 Simple Linear Regression

With n data points (xi,yi)
n
i=1, our goal is to find the best linear fit of the data

(xi,ŷi = α̂+ β̂xi)
n
i=1,

where the coefficients α̂ and β̂ are determined from the data. What do we mean by the
“best” fit? Gauss proposed to use the following OLS criterion:1

(α̂, β̂) = argmin
a,b

n−1
n∑

i=1

(yi − a− bxi)
2. (2.1)

The OLS criterion is based on the squared “misfits” yi − a − bxi. Another intuitive
criterion is based on the absolute values of those misfits, which is called the least absolute
deviation (LAD). However, OLS is simpler because the objective function is smooth in (a, b),
and we can obtain close-form solutions.

How do we solve the OLS minimization problem in (2.1)? The objective function is

quadratic, and as a and b diverge, it diverges to infinity. So it must have a minimizer (α̂, β̂),
which satisfies the first-order condition:

− 2

n

n∑
i=1

(yi − α̂− β̂xi) = 0, (2.2)

− 2

n

n∑
i=1

xi(yi − α̂− β̂xi) = 0. (2.3)

The equations (2.2) and (2.3) are called the Normal Equations of OLS. The first equation
(2.2) implies

ȳ = α̂+ β̂x̄, (2.4)

that is, the OLS line must go through the sample mean of the data (x̄, ȳ). The second
equation (2.3) implies

xy = α̂x̄+ β̂x2, (2.5)

where xy is the sample mean of the xiyi’s, and x2 is the sample mean of the x2i ’s. Subtracting
(2.4)×x̄ from (2.5), we have

xy − x̄ȳ = β̂(x2 − x̄2),

which is
σ̂xy = β̂σ̂2

x,

and implies

β̂ =
σ̂xy
σ̂2
x

. (2.6)

So the OLS coefficient of x equals the sample covariance between x and y divided by the
sample variance of x. From (2.4), we obtain that

α̂ = ȳ − β̂x̄. (2.7)

By (2.7), the fitted line ŷi = α̂+β̂xi simplifies to ŷi = ȳ−β̂x̄+β̂xi, and more symmetrically,

ŷi − ȳ = β̂(xi − x̄). With (2.6), we can further simplify the fitted line as

ŷi − ȳ =
σ̂xy
σ̂2
x

(xi − x̄) =
ρ̂xyσ̂xσ̂y
σ̂2
x

(xi − x̄),

1The idea of OLS is often attributed to Gauss and Legendre. Gauss used it in the process of discovering
Ceres, and his work was published in 1809. Legendre’s work appeared in 1805 but Gauss claimed that he
had been using it since 1794 or 1795. Stigler (1981) reviews the history of OLS.
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which implies
ŷi − ȳ

σ̂y
= ρ̂xy

xi − x̄

σ̂x
,

the Galtonian formula mentioned in Chapter 1.
We can obtain the fitted line based on Galton’s data using the R code below.

1 > library("HistData")

2 > xx = GaltonFamilies$midparentHeight
3 > yy = GaltonFamilies$childHeight
4 >

5 > center_x = mean(xx)

6 > center_y = mean(yy)

7 > sd_x = sd(xx)

8 > sd_y = sd(yy)

9 > rho_xy = cor(xx , yy)

10 >

11 > beta_fit = rho_xy*sd_y/sd_x

12 > alpha_fit = center_y - beta_fit*center_x

13 > alpha_fit

14 [1] 22.63624

15 > beta_fit

16 [1] 0.6373609

Since the dataset is not natively available in Python, we can use the statsmodels package
to load the dataset from the R package HistData, and then carry out the rest calculations
in Python. The code below shows how to do this.

1 import numpy as np

2 import statsmodels.api as sm

3

4 # Load the Galton Families dataset from statsmodels

5 galton = sm.datasets.get_rdataset("GaltonFamilies", "HistData").data

6

7 # Extract midparentHeight and childHeight

8 xx = galton["midparentHeight"]. values

9 yy = galton["childHeight"]. values

10

11 # Compute statistics

12 center_x = np.mean(xx)

13 center_y = np.mean(yy)

14 sd_x = np.std(xx, ddof =1) # sample standard deviation (same as R)

15 sd_y = np.std(yy, ddof =1)

16 rho_xy = np.corrcoef(xx, yy)[0, 1]

17

18 # Regression slope and intercept (beta , alpha)

19 beta_fit = rho_xy * sd_y / sd_x

20 alpha_fit = center_y - beta_fit * center_x

21

22

23 print("alpha_fit:", f"{alpha_fit:␣.6f}")

24 print("beta_fit:", f"{beta_fit:␣.6f}")

The outputs are:

1 alpha_fit: 22.636241

2 beta_fit: 0.637361
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We then generate Figure 2.1 based on the original data and the OLS coefficients.

2.2 Final comments

I make two final comments on OLS.

(C1) We can write the sample mean as the solution to the OLS with only the intercept:

ȳ = argmin
µ
n−1

n∑
i=1

(yi − µ)2. (2.8)

(C2) We can fit OLS of yi on xi without the intercept:

β̂ = argmin
b
n−1

n∑
i=1

(yi − bxi)
2

which equals

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

=
⟨x, y⟩
⟨x, x⟩

, (2.9)

where x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T are the n-dimensional vectors containing
all observations, and ⟨x, y⟩ =

∑n
i=1 xiyi denotes the inner product between x and y.

Although it is rare to fit the above OLS in practical data analysis, the formulas in (2.8)
and (2.9) will be the building blocks for many discussions in later parts of the book. I leave
the proof of (2.8) and (2.9) as Problem 2.1.

2.3 Homework problems

2.1 Univariate OLS

Prove (2.8) and (2.9).

2.2 Pairwise slopes

Prove Theorem 2.1 below.

Theorem 2.1 Given (xi, yi)
n
i=1 with univariate xi and yi, show that β̂ in (2.6) equals

β̂ =
∑
(i,j)

wijbij ,

where the summation is over all pairs of observations (i, j),

bij =
yi − yj
xi − xj
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FIGURE 2.2: Regression (left) and no regression (right)

is the slope determined by two points (xi, yi) and (xj , yj), and

wij =
xi − xj)

2∑
(i′,j′)(xi′ − xj′)2

is the weight proportional to the squared distance between xi and xj. In the above formulas,
if xi = xj, then we define bij = 0, and the corresponding weight wij equals 0.

Remark: Wu (1986) and Gelman and Park (2009) used Theorem 2.1. Problem 3.10 gives
a more general result.

2.3 No regression

Woolley (1941) proposed a method to minimize the sum of the areas formed between the
data points and fitted line. The right panel of Figure 2.2 illustrates the area formed between
data point (xi, yi) and the line y = a+ bx.

Prove that if ρ̂xy > 0, then the minimizer (α̂′, β̂′) satisfies

β̂′ =
σ̂y
σ̂x

and
α̂′ = ȳ − β̂x̄.

Remark: The fitted line is

ŷi = α̂′ + β̂′xi

= ȳ − β̂x̄+ β̂′xi,
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which is equivalent to
ŷi − ȳ

σ̂y
=
xi − x̄

σ̂x
.

It does not have the regression factor ρ̂xy, compared with the Galtonian formula, which is
derived by minimizing the residual sum of squares as illustrated by the left panel of Figure
2.2.



3

Multiple Linear Regression

Multiple linear regression refers to linear regression with multiple covariates. This chapter
provides algebraic results about ordinary least squares (OLS). The results in this chapter
do not rely on any stochastic assumptions.

3.1 The OLS formula

Recall that we have the outcome vector and covariate matrix:

Y =


y1
y2
...
yn

 , X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
...

xn1 xn2 · · · xnp

 .

Depending on the purpose, it is convenient to view X as a collection of row or column
vectors:

X =


xT
1

xT
2
...
xT
n

 = (X1, . . . , Xp)

where xT
i = (xi1, . . . , xip) is the row vector consisting of the covariates of unit i, and Xj =

(x1j , . . . , xnj)
T is the column vector of the j-th covariate for all units.

We want to find the “best” linear fit of the data (xi, ŷi)
n
i=1 with

ŷi = xT

i β̂ = β̂1xi1 + · · ·+ β̂pxip

in the sense that

β̂ = arg min
b∈Rp

n−1
n∑

i=1

(yi − xT

i b)
2 (3.1)

= arg min
b∈Rp

n−1∥Y −Xb∥2, (3.2)

where β̂ = (β̂1, . . . , β̂p)
T is called the OLS coefficient, the ŷi’s are called the fitted values,

and the ε̂i = yi − ŷi’s are called the residuals.
The objective function in (3.1) is quadratic in b, which diverges to infinity when b

diverges to infinity. So it must have a minimizer β̂ satisfying the first-order condition

− 2

n

n∑
i=1

xi(yi − xT

i β̂) = 0,

11
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which simplifies to
n∑

i=1

xi(yi − xT

i β̂) = 0, (3.3)

or, equivalently, in matrix form:

XT(Y −Xβ̂) = 0. (3.4)

The above equations (3.3) and (3.4) are called the Normal equation of the OLS, which
implies the main theorem:

Theorem 3.1 The OLS coefficient in (3.1) and (3.2) equals

β̂ =

(
n∑

i=1

xix
T

i

)−1( n∑
i=1

xiyi

)
= (XTX)−1XTY

if XTX =
∑n

i=1 xix
T
i is non-degenerate.

Comment on the two equivalent forms in Theorem 3.1. The equivalence of the two forms
of the OLS coefficient follows from

XTX = (x1, . . . , xn)


xT
1

xT
2
...
xT
n

 =

n∑
i=1

xix
T

i ,

and

XTY = (x1, . . . , xn)


y1
y2
...
yn

 =

n∑
i=1

xiyi.

Depending on the purpose, both forms can be useful in later discussions.
Comment on the condition in Theorem 3.1. The non-degeneracy of XTX in Theorem

3.1 requires that for any non-zero vector α = (α1, . . . , αp)
T ∈ Rp, we must have

αTXTXα = ∥Xα∥2 ̸= 0

which is equivalent to
Xα = α1X1 + · · ·+ αpXp ̸= 0,

i.e., the columns ofX are linearly independent.1 This effectively rules out redundant columns
in the design matrix X. If X1 can be represented by other columns X1 = c2X2+ · · ·+ cpXp

for some (c2, . . . , cp), then X
TX is degenerate.

Throughout the book, we invoke the following condition unless stated otherwise.

Condition 3.1 The column vectors of X are linearly independent.

1This book uses different notions of “independence,” which can be confusing sometimes. In linear algebra,
a set of vectors is linearly independent if any nonzero linear combination of them is not zero; see Appendix
A. In probability theory, two random variables are independent if their joint density factorizes into the
product of the marginal distributions; see Appendix B.
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FIGURE 3.1: The geometry of OLS

3.2 The geometry of OLS

The OLS has clear geometric interpretations. Figure 3.1 illustrate its geometry with n = 3
and p = 2. For any b = (b1, . . . , bp)

T ∈ Rp and X = (X1, . . . , Xp) ∈ Rn×p,

Xb = (X1, . . . , Xp)

b1...
bp

 = b1X1 + · · ·+ bpXp

represents a linear combination of the column vectors of the design matrix X. So the OLS
problem is to find the best linear combination of the column vectors ofX to approximate the
response vector Y . Recall that all linear combinations of the column vectors of X constitute
the column space of X, denoted by2

C(X) = {b1X1 + · · ·+ bpXp : b1, . . . , bp ∈ R}.

So the OLS problem is to find the vector in C(X) that is the closest to Y . Geometrically, the

vector must be the projection of Y onto C(X). By projection, the residual vector ε̂ = Y −Xβ̂
must be orthogonal to C(X), or, equivalently, the residual vector is orthogonal toX1, . . . , Xp.
This geometric intuition implies that

XT

1 ε̂ = 0, . . . , XT

p ε̂ = 0.

In matrix form, we have

XTε̂ =

X
T
1 ε̂
...

XT
p ε̂

 = 0,

2Please review Appendix A for some basic linear algebra background.
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which is equivalent to
XT(Y −Xβ̂) = 0,

the Normal equation in (3.4). The above argument gives a geometric derivation of the OLS
formula in Theorem 3.1.

In Figure 3.1, since the triangle ABC is rectangular, the fitted vector Ŷ = Xβ̂ is orthog-
onal to the residual vector ε̂, and moreover, the Pythagorean Theorem implies that

∥Y ∥2 = ∥Xβ̂∥2 + ∥ε̂∥2.

The following theorem states an algebraic fact that gives an alternative proof of the
OLS formula. It is essentially the Pythagorean Theorem for the rectangular triangle BCD
in Figure 3.1.

Theorem 3.2 For any b ∈ Rp, we have the following decomposition

∥Y −Xb∥2 = ∥Y −Xβ̂∥2 + ∥X(β̂ − b)∥2,

where implies that ∥Y −Xb∥2 ≥ ∥Y −Xβ̂∥2 with equality holding if and only if b = β̂.

Proof of Theorem 3.2: We have the following decomposition:

∥Y −Xb∥2 = (Y −Xb)T(Y −Xb)

= (Y −Xβ̂ +Xβ̂ −Xb)T(Y −Xβ̂ +Xβ̂ −Xb)

= (Y −Xβ̂)T(Y −Xβ̂) + (Xβ̂ −Xb)T(Xβ̂ −Xb)

+(Y −Xβ̂)T(Xβ̂ −Xb) + (Xβ̂ −Xb)T(Y −Xβ̂).

The first term equals ∥Y −Xβ̂∥2 and the second term equals ∥X(β̂−b)∥2. We need to show
the last two terms are zero. By symmetry of these two terms, we only need to show that
the last term is zero. This is true by the Normal equation (3.4) of the OLS:

(Xβ̂ −Xb)T(Y −Xβ̂) = (β̂ − b)TXT(Y −Xβ̂) = 0.

□
I end this section by commenting on the role of the intercept in OLS.
The role of the intercept in OLS. In most applications, X contains a column of 1n =

(1, . . . , 1)T. In those cases, we have
1T

nε̂ = 0,

and therefore,

n−1
n∑

i=1

ε̂i = 0.

That is, with the intercept in OLS, the residuals are automatically centered to have mean
0.

3.3 The projection matrix from OLS

The geometry in Section 3.2 also shows that Ŷ = Xβ̂ is the solution to the following problem

Ŷ = arg min
v∈C(X)

∥Y − v∥2.
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Using Theorem 3.1, we have Ŷ = Xβ̂ = HY , where

H = X(XTX)−1XT

is an n× n matrix. It is called the hat matrix because it puts a hat on Y when multiplying
Y . Algebraically, we can show that H is a projection matrix3 because

H2 = X(XTX)−1XTX(XTX)−1XT

= X(XTX)−1XT

= H,

and

HT = {X(XTX)−1XT}T

= X(XTX)−1XT

= H.

Its rank equals its trace, so

rank(H) = trace(H) = trace{X(XTX)−1XT}
= trace{(XTX)−1XTX}
= trace(Ip)

= p.

The projection matrix H has the following geometric interpretations.

Proposition 3.1 The projection matrix H = X(XTX)−1XT satisfies

(G1) Hv = v if and only if v ∈ C(X);

(G2) Hw = 0 if and only if w ⊥ C(X).

Recall that C(X) is the column space of X. (G1) states that projecting any vector
in C(X) onto C(X) does not change the vector. (G2) states that projecting any vector
orthogonal to C(X) onto C(X) results in a zero vector.
Proof of Proposition 3.1: I first prove (G1). If v ∈ C(X), then v = Xb for some b, which
implies

Hv = X(XTX)−1XTXb = Xb = v.

Conversely, if v = Hv, then v = X(XTX)−1XTv = Xb with b = (XTX)−1XTv, which
ensures v ∈ C(X).

I then prove (G2). If w ⊥ C(X), then w is orthogonal to all column vectors of X, that
is, XT

j w = 0 (j = 1, . . . , p). In matrix form, we have XTw = 0, which implies

Hw = X(XTX)−1XTw = 0.

Conversely, ifHw = X(XTX)−1XTw = 0, then wTX(XTX)−1XTw = 0. Because (XTX)−1

is positive definite under Condition 3.1, we have XTw = 0, which implies w ⊥ C(X). □
Writing H = (hij)1≤i,j≤n and ŷ = (ŷ1, . . . , ŷn)

T, we have another basic identity

ŷi =

n∑
j=1

hijyj

= hiiyi +
∑
j ̸=i

hijyj .

3Review the definition and properties of projection matrices in Appendix A.
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It shows that the predicted value ŷi is a linear combination of the outcomes of all units
and the coefficients depend on H. Moreover, if X contains a column of intercepts 1n =
(1, . . . , 1)T, then

H1n = 1n, (3.5)

which implies
n∑

j=1

hij = 1 (i = 1, . . . , n) (3.6)

and therefore, ŷi is a weighted average of the outcomes of all units. Although the sum of
the weights is 1, some of them can be negative. Readers, make sure the claims of (3.5) and
(3.6) make sense to you. See Problem 3.6.

In general, the hat matrix has complex forms, but when the covariates are dummy
variables for group indicators, it has more explicit forms. I give two examples below.

Example 3.1 In a treatment-control experiment with n1 treated and n0 control units, the
matrix X contains 1 and a dummy variable for the treatment:

X =

(
1n1 1n1

1n0
0n0

)
.

We can show that
H = diag{n−1

1 1n1
1T

n1
, n−1

0 1n0
1T

n0
}.

Example 3.2 In an experiment with nj units receiving treatment level j (j = 1, . . . , J),
the covariate matrix X contains J dummy variables for the treatment levels:

X = diag{1n1
, . . . , 1nJ

}.

We can show that
H = diag{n−1

1 1n1
1T

n1
, . . . , n−1

J 1nJ
1T

nJ
}.

I leave the proofs of Examples 3.1 and 3.2 as Problem 3.7.

3.4 Homework problems

3.1 Univariate and multivariate OLS

Derive the univariate OLS based on the multivariate OLS formula with

X =

1 x1
...

...
1 xn

 ,

where the xi’s are scalars.

3.2 OLS via vector and matrix calculus

Use vector and matrix calculus to prove that the OLS coefficient β̂ minimizes (Y −Xb)T(Y −
Xb).
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3.3 OLS based on pseudo inverse

Prove that β̂ = X+Y .
Remark: Recall the definition of the pseudo inverse in Appendix A. Under Condition

3.1, we have X+ = (XTX)−1XT.

3.4 Invariance of OLS

Theorem 3.3 below states the invariance properties of OLS. Prove Theorem 3.3.

Theorem 3.3 Assume that XTX is non-degenerate and Γ is a p×p non-degenerate matrix.
Define X̃ = XΓ. From the OLS fit of Y on X, we obtain the coefficient β̂, the fitted value
Ŷ , and the residual ε̂; from the OLS fit of Y on X̃, we obtain the coefficient β̃, the fitted
value Ỹ , and the residual ε̃.

We have
β̂ = Γβ̃, Ŷ = Ỹ , ε̂ = ε̃.

Remark: From a linear algebra perspective, X and XΓ have the same column space if
Γ is a non-degenerate matrix:

{Xb : b ∈ Rp} = {XΓc : c ∈ Rp}.

Consequently, there must be a unique projection of Y onto the common column space.

3.5 Invariance of the hat matrix

This problem extends Theorem 3.3 in Problem 3.4.
Prove that H does not change if we change X to XΓ where Γ ∈ Rp×p is a non-degenerate

matrix.

3.6 Hat matrix with the intercept

Prove (3.5) and (3.6).

3.7 Special hat matrices

Verify the formulas of the hat matrices in Examples 3.1 and 3.2.

3.8 OLS with multiple responses

For each unit i = 1, . . . , n, we have multiple responses yi = (yi1, . . . , yiq)
T ∈ Rq and multiple

covariates xi = (xi1, . . . , xip)
T ∈ Rp. Define

Y =

y11 · · · y1q
...

...
yn1 · · · ynq

 =

y
T
1
...
yT
n

 = (Y1, . . . , Yq) ∈ Rn×q

and

X =

x11 · · · x1p
...

...
xn1 · · · xnp

 =

x
T
1
...
xT
n

 = (X1, . . . , Xp) ∈ Rn×p

as the response and covariate matrices, respectively. Define the multiple OLS coefficient
matrix as

B̂ = arg min
B∈Rp×q

n∑
i=1

∥yi −BTxi∥2
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Show that B̂ = (B̂1, . . . , B̂q) has column vectors

B̂1 = (XTX)−1XTY1,

...

B̂q = (XTX)−1XTYq.

Remark: This result tells us that the OLS fit with a vector outcome reduces to multiple
separate OLS fits, or, the OLS fit of a matrix Y on a matrix X reduces to the column-wise
OLS fits of Y on X.

3.9 Full sample and subsample OLS coefficients

Partition the full sample into K subsamples:

X =

 X(1)

...
X(K)

 , Y =

 Y(1)
...

Y(K)

 ,

where the kth sample consists of (X(k), Y(k)) with X(k) ∈ Rnk×p and Y(k) ∈ Rnk being the

covariate matrix and outcome vector. The sample sizes satisfy n =
∑K

k=1 nk. Let β̂ be the

OLS coefficient based on the full sample, and β̂(k) be the OLS coefficient based on the kth
sample.

Prove that

β̂ =

K∑
k=1

W(k)β̂(k),

where the weight matrix equals

W(k) = (XTX)−1XT

(k)X(k).

Remark: In the special case of a univariate yi and xi, the OLS of yi on xi without the
intercept gives the coefficient

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

Partition the units into K disjoint parts: {1, . . . , n} = I1 ∪ · · · ∪ IK . Run OLS of yi on xi
without the intercept using units in Ik to obtain the coefficient β̂(k). The above formula
implies that

β̂ =

K∑
k=1

W(k)β̂(k)

where

W(k) =

∑
i∈Ik

x2i∑n
i=1 x

2
i

is proportional to the sum of squares of the regressor xi’s in Ik.

3.10 Jacobi’s theorem

Prove Theorem 3.4 below.
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Theorem 3.4 (Jacobi’s Theorem) The set {1, . . . , n} has
(
n
p

)
size-p subsets. Each sub-

set S defines a linear equation for b ∈ Rp:

YS = XSb

where YS ∈ Rp is the subvector of Y and XS ∈ Rp×p is the submatrix of X, corresponding
to the units in S. Define the subset coefficient

β̂S = X−1
S YS

if XS is invertible and β̂S = 0 otherwise.
The OLS coefficient equals a weighted average of these subset coefficients:

β̂ =
∑
S

wS β̂S

where the summation is over all subsets, and the weights are

wS =
| det(XS)|2∑
S′ | det(XS′)|2

.

Remark: Theorem 3.4 extends Problem 2.2. Subrahmanyam (1972) reported Theorem
3.4 although Berman (1988) attributed it to Jacobi. Wu (1986) used it in analyzing the
statistical properties of OLS.

To prove Theorem 3.4, you can use Cramer’s rule to express the OLS coefficient and use
the Cauchy–Binet formula to expand the determinant of XTX.
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Linear Algebra

Linear algebra is crucial for understanding the theory of the linear model. This Appendix
reviews the basics of linear algebra that are closely related to this book.

All vectors are column vectors in this book. This is coherent with R.

A.1 Basics of vectors and matrices

Euclidean space

The n-dimensional Euclidean space Rn is a set of all n-dimensional vectors equipped with
an inner product:

⟨x, y⟩ = xTy =

n∑
i=1

xiyi,

where x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T are two n-dimensional vectors. The length
of a vector x is defined as

∥x∥ =
√

⟨x, x⟩ =
√
xTx.

The Cauchy–Schwarz inequality states that the inner product of x and y is bounded from
above by the product of their length.

Proposition A.1 For two n-dimensional vectors x and y, we have

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥,

or, more transparently, (
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
.

The equality holds if and only if ayi = bxi for some a and b, for all i = 1, . . . , n.

We can use the Cauchy–Schwarz inequality to prove the triangle inequality that the
length of the summation of x and y is bounded from above by the summation of their
length.

Proposition A.2 For two n-dimensional vectors x and y, we have

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

21
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We say that x and y are orthogonal, denoted by x ⊥ y, if ⟨x, y⟩ = 0. We call a set of vec-
tors v1, . . . , vm ∈ Rn orthonormal if they all have unit length and are mutually orthogonal.

Geometrically, we can define the cosine of the angle between two vectors x, y ∈ Rn as

cos∠(x, y) =
⟨x, y⟩
∥x∥∥y∥

=

∑n
i=1 xiyi√∑n

i=1 x
2
i

∑n
i=1 y

2
i

.

For unit vectors, it reduces to the inner product. When both x and y are orthogonal to 1n,
that is, x̄ = n−1

∑n
i=1 xi = 0 and ȳ = n−1

∑n
i=1 yi = 0, the formula of the cosine of the

angle is identical to the sample Pearson correlation coefficient

ρ̂xy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
.

Sometimes, we simply say that the cosine of the angle of two vectors measures their corre-
lation even when they are not orthogonal to 1n.

Column space of a matrix

Given an n×m matrix A, we can view it in terms of all elements

A = (aij) =

a11 · · · a1m
...

...
an1 · · · anm

 ,

or row vectors

A =

a
T
1
...
aT
n

 ,

where ai ∈ Rm (i = 1, . . . , n), or column vectors

A = (A1, . . . , Am),

where Aj ∈ Rn j = 1, . . . ,m. In statistics, the rows correspond to the units, so the ith
row vector is the vector observations for unit i. Moreover, viewing A in terms of its column
vectors can give more insights.

Definition A.1 (column space) For an n×m matrix A = (A1, . . . , Am), define the col-
umn space of A as

C(A) = {α1A1 + · · ·+ αmAm : α1, . . . , αm ∈ R} .

The column space of A is the set of all linear combinations of the column vec-
tors A1, . . . , Am. The column space is important because we can write Aα, with α =
(α1, . . . , αm)T, as

Aα = (A1, . . . , Am)

α1

...
αm

 = α1A1 + · · ·+ αmAm,

which is in C(A).
We define the row space of A as the column space of AT.



Basics of vectors and matrices 23

A.1 Matrix product

Given an n × m matrix A = (aij) and an m × r matrix B = (bij), we can define their
product as C = AB where the n× r matrix C = (cij) has the (i, j)th element

cij =

m∑
k=1

aikbkj .

In terms of the row vectors of A or column vectors of B, we have

cij = aT

i Bj ,

that is, cij equals the inner product of the ith row vector of A and the jth column vector
of B. Moreover, the matrix product satisfies

AB = A(B1, . . . , Br) = (AB1, . . . , ABr) (A.1)

so the column vectors of AB belongs to the column space of A; it also satisfies

AB =

a
T
1
...
aT
n

B =

a
T
1B
...

aT
nB

 (A.2)

so the row vectors of AB belong to the column space of BT, or equivalently, the row space
of B.

A.2 Linearly independent vectors and rank

We call a set of vectors A1, . . . , Am ∈ Rn linearly independent if

x1A1 + · · ·+ xmAm = 0

must imply x1 = · · · = xm = 0. We call Aj1 , . . . , Ajk maximally linearly independent if
adding another vector makes them linearly dependent. Define k as the rank of {A1, . . . , Am}
and also define k as the rank of the matrix A = (A1, . . . , Am).

A set of vectors may have different subsets of vectors that are maximally linearly inde-
pendent. But the rank k is unique. We can also define the rank of a matrix in terms of its
row vectors. A remarkable theorem in linear algebra is that it does not matter whether we
define the rank of a matrix in terms of its column vectors or row vectors.

From the matrix product formulas (A.1) and (A.2), we have the following result.

Proposition A.3 rank(AB) ≤ min{rank(A), rank(B)}.

The rank decomposition of a matrix decomposes A into the product of two matrices of
full ranks.

Proposition A.4 If an n×m matrix A has rank k, then A = BC for some n× k matrix
B and k ×m matrix C.

Proof of Proposition A.4: Let Aj1 , . . . , Ajk be the maximally linearly independent col-
umn vectors of A. Stack them into an n× k matrix B = (Aj1 , . . . , Ajk). They can linearly
represent all column vectors of A:

A = (c11Aj1 + · · ·+ ck1Ajk , . . . , c1mAj1 + · · ·+ ckmAjk)

= (BC1, . . . , BCm)

= BC,



24 Linear Algebra

where C = (C1, . . . , Cm) is an k ×m matrix with column vectors

C1 =

c11...
ck1

 , · · ·Cm =

c1m...
ckm

 .

□
Proposition A.3 ensures that the B and C in Proposition A.4 must satisfy rank(B) ≥ k

and rank(C) ≥ k, so they must both have rank k. The decomposition in Proposition A.4 is
not unique since the choice of the maximally linearly independent column vectors of A is
not unique.

Some special matrices

An n× n matrix A is symmetric if AT = A.
An n × n diagonal matrix A has zero off-diagonal elements, denoted by A =

diag{a11, . . . , ann}. Diagonal matrices are symmetric.
An n×n matrix is orthogonal if ATA = AAT = In. The column vectors of an orthogonal

matrix are orthonormal; so are its row vectors. If A is orthogonal, then

∥Ax∥ = ∥x∥

for any vector x ∈ Rn. That is, multiplying a vector by an orthogonal matrix does not change
the length of the vector. Geometrically, an orthogonal matrix corresponds to rotation.

An n×n matrix A is upper triangular if aij = 0 for i > j and lower triangular if aij = 0
for i < j.

Determinant

The original definition of the determinant of a matrix A = (aij) ∈ Rn×n, due to Leibniz,
is quite complicated, which relies on the notation of permutation. A permutation σ on
{1, . . . , n} is a one-to-one mapping from {1, . . . , n} to {1, . . . , n}. Let sgn(σ) denote the
sign of the permutation σ, which equals 1 if σ can be obtained via an even number of
transpositions and 0 if σ can be obtained via an odd number of transpositions. Define

det(A) =
∑
σ

sgn(σ)

n∏
i=1

ai,σ(i),

where the summation is over all possible permutations, and ai,σ(i) is the (i, σ(i))-th element
of A.

The determinant of a 2× 2 matrix has a simple form:

det

(
a b
c d

)
= ad− bc. (A.3)

The determinant of the Vandermonde matrix has the following formula:

det


1 x1 x21 · · · xn−1

1

1 x2 x22 · · · xn−1
2

...
...

...
...

1 xn x2n · · · xn−1
n

 =
∏

1≤i,j≤n

(xj − xi). (A.4)

This book will not use the above definition of the determinant. The properties of the
determinant are more useful. I will review two.
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Proposition A.5 For two square matrices A and B, we have

det(AB) = det(A)det(B) = det(BA).

Proposition A.6 For two square matrices A ∈ Rm×m and B ∈ Rn×n, we have

det

(
A 0
C B

)
= det

(
A D
0 B

)
= det(A)det(B).

Inverse of a matrix

Let In be the n× n identity matrix. An n× n matrix A is invertible or nonsingular if there
exists an n × n matrix B such that AB = BA = In. We call B the inverse of A, denoted
by A−1. If A is an orthogonal matrix, then AT = A−1.

A square matrix is invertible if and only if det(A) ̸= 0.
The inverse of a 2× 2 matrix is(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
. (A.5)

The inverse of a 3× 3 lower triangular matrix is a 0 0
b c 0
d e f

−1

=
1

acf

 cf 0 0
−bf af 0
be− cd −ae ac

 . (A.6)

A useful identity is
(AB)−1 = B−1A−1,

if both A and B are invertible.

Eigenvalues and eigenvectors

For an n×n matrix A, if there exists a pair of n-dimensional, non-zero vector x and a scalar
λ such that

Ax = λx,

then we call λ an eigenvalue and x the associated eigenvector of A. From the definition,
eigenvalue and eigenvector always come in pairs. The following eigen-decomposition theorem
is fundamental for real symmetric matrices.

Theorem A.1 If A is an n× n symmetric matrix, then there exists an orthogonal matrix
P such that

PTAP = diag{λ1, . . . , λn}, (A.7)

where the λ’s are the n eigenvalues of A, and the column vectors of P = (γ1, · · · , γn) are
the corresponding eigenvectors.

If we multiply (A.7) by P from the left, then we can write the eigendecomposition as

AP = Pdiag{λ1, . . . , λn}

or, equivalently,
A(γ1, · · · , γn) = (λ1γ1, · · · , λnγn),

then (λi, γi) must be a pair of eigenvalue and eigenvector. Moreover, the eigendecomposition
in Theorem A.1 is unique up to the permutation of the columns of P and the corresponding
λi’s.
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Corollary A.1 If a real symmetric matrix A has eigen-decomposition PTAP =
diag{λ1, . . . , λn}, then

A = Pdiag{λ1, . . . , λn}PT,

and therefore,
Ak = AA · · ·A = Pdiag{λk1 , . . . , λkn}PT.

If the eigenvalues of A are nonzero, then

A−1 = Pdiag{1/λ1, . . . , 1/λn}PT.

The eigen-decomposition is also useful for defining the square root of an n×n symmetric
matrix. In particular, if the eigenvalues of A are nonnegative, then we can define

A1/2 = Pdiag{
√
λ1, . . . ,

√
λn}PT.

By definition, A1/2 is a symmetric matrix satisfying A1/2A1/2 = A. There are other defini-
tions of the square root of a symmetric matrix, but we adopt this form in this book.

From (A.7), we can write A as

A = Pdiag{λ1, . . . , λn}PT

= (γ1, · · · , γn)diag{λ1, . . . , λn}

 γT
1
...
γT
n


=

n∑
i=1

λiγiγ
T

i .

For an n × n symmetric matrix A, its rank equals the number of non-zero eigenvalues
and its determinant equals the product of all eigenvalues. The matrix A is of full rank if
all its eigenvalues are non-zero, which implies that its rank equals n and its determinant is
non-zero.

Quadratic form

For an n×n symmetric matrix A = (aij) and an n-dimensional vector x, we can define the
quadratic form as

xTAx = ⟨x,Ax⟩ =
n∑

i=1

n∑
j=1

aijxixj .

We always consider a symmetric matrix in the quadratic form without loss of generality.
Otherwise, we can symmetrize A as Ã = (A + AT)/2 without changing the value of the
quadratic form because

xTAx = xTÃx.

We call A positive semi-definite, denoted by A ⪰ 0, if xTAx ≥ 0 for all x; we call A
positive definite, denoted by A ≻ 0, if xTAx > 0 for all nonzero x.

We can also define the partial order between matrices. We call A ⪰ B if and only if
A − B ⪰ 0, and we call A ≻ B if and only if A − B ≻ 0. This is important in statistics
because we often compare the efficiency of estimators based on their variances or covariance
matrices. Given two unbiased estimators θ̂1 and θ̂2 for a scalar parameter θ, we say that θ̂1
is at least as efficient as θ̂2 if var(θ̂2) ≥ var(θ̂1). In the vector case, we say that θ̂1 is at least
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as efficient as θ̂2 if cov(θ̂2) ⪰ cov(θ̂1), which is equivalent to var(ℓTθ̂2) ≥ var(ℓTθ̂1) for any
linear combination of the estimators.

The eigenvalues of a symmetric matrix determine whether it is positive semi-definite or
positive definite.

Theorem A.2 For a symmetric matrix A, it is positive semi-definite if and only if all its
eigenvalues are nonnegative, and it is positive definite if and only if all its eigenvalues are
positive.

An important result is the relationship between the eigenvalues and the extreme values
of the quadratic form. Assume that the eigenvalues are rearranged in decreasing order such
that λ1 ≥ · · · ≥ λn. For a unit vector x with length ∥x∥ = 1, we have that

xTAx = xT

n∑
i=1

λiγiγ
T

i x =

n∑
i=1

λiα
2
i

where

α =

α1

...
αn

 =

γ
T
1 x
...

γT
nx

 = PTx

has length ∥α∥2 = ∥x∥2 = 1. Then the maximum value of xTAx is λ1, which is achieved at
α1 = 1 and α2 = · · · = αn = 0 (for example, if x = γ1, then α1 = 1 and α2 = · · · = αn = 0).
For a unit vector x that is orthogonal to γ1, we have that

xTAx =

n∑
i=2

λiα
2
i

where α = PTx has unit length with α1 = 0. The maximum value of xTAx is λ2, which is
achieved at α2 = 1 and α1 = α3 = · · · = αn = 0, for example, x = γ2. By induction, we
have the following theorem.

Theorem A.3 Suppose that an n × n symmetric matrix has eigen-decomposition∑n
i=1 λiγiγ

T
i where λ1 ≥ · · · ≥ λn.

1. The optimization problem

max
x∈Rn

xTAx such that ∥x∥ = 1

has maximum λ1, which can be achieved by γ1.

2. The optimization problem

max
x∈Rn

xTAx such that ∥x∥ = 1, x ⊥ γ1

has maximum λ2, which can be achieved by γ2.

3. The optimization problem

max
x∈Rn

xTAx such that ∥x∥ = 1, x ⊥ γ1, . . . , x ⊥ γk

has maximum λk+1, which can be achieved by γk+1 (k = 1, . . . , n− 1).



28 Linear Algebra

Theorem A.3 implies the following theorem on the Rayleigh quotient

r(x) = xTAx/xTx (x ∈ Rn).

Theorem A.4 (Rayleigh quotient and eigenvalues) The maximum and minimum eigenval-
ues of an n× n symmetric matrix A equals

λmax(A) = max
x̸=0

r(x), λmin(A) = min
x̸=0

r(x)

with the maximizer and minimizer being the eigenvectors corresponding to the maximum
and minimum eigenvalues, respectively.

An immediate consequence of Theorem A.4 is that the diagonal elements of A are
bounded by the smallest and largest eigenvalues of A. This follows by taking x =
(0, . . . , 1, . . . , 0)T, where only the ith element equals 1.

Trace

The trace of an n× n matrix A = (aij) is the sum of all its diagonal elements, denoted by

trace(A) =

n∑
i=1

aii.

The trace operator has two important properties that can sometimes help to simplify
calculations.

Proposition A.7 trace(AB) = trace(BA) as long as AB and BA are both square matrices.

We can verify Proposition A.7 by definition. It states that AB and BA have the same
trace although AB differs from BA in general. In fact, it is particularly useful if the dimen-
sion of BA is much lower than the dimension of AB. For example, if both A = (a1, . . . , an)

T

and B = (b1, . . . , bn) are vectors, then trace(AB) = trace(BA) = ⟨BT, A⟩ =
∑n

i=1 aibi.

Proposition A.8 The trace of an n× n symmetric matrix A equals the sum of its eigen-
values: trace(A) =

∑n
i=1 λi.

Proof of Proposition A.8: It follows from the eigen-decomposition and Proposition A.7.
Let Λ = diag{λ1, . . . , λn}. Then we have

trace(A) = trace(PΛPT) = trace(ΛPTP ) = trace(Λ) =

n∑
i=1

λi.

□

Projection matrix

An n× n matrix H is a projection matrix, if it is symmetric and H2 = H. The eigenvalues
of H must be either 1 or 0. To see this, we assume that Hx = λx for some nonzero vector
x, and use two ways to calculate H2x:

H2x = Hx = λx,

H2x = H(Hx) = H(λx) = λHx = λ2x.
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So (λ− λ2)x = 0 which implies that λ − λ2 = 0, i.e., λ = 0 or 1. So the trace of H equals
its rank:

trace(H) = rank(H).

Why is this a reasonable definition of a “projection matrix”? Or, why must a projection
matrix satisfy HT = H and H2 = H? First, it is reasonable to require that Hx1 = x1
for any x1 ∈ C(H), the column space of H. Since x1 = Hα for some α, we indeed have
Hx1 = H(Hα) = H2α = Hα = x1 because of the propertyH

2 = H. Second, it is reasonable
to require that x1 ⊥ x2 for any vector x1 = Hα ∈ C(H) and x2 such that Hx2 = 0. So we
need αTHTx2 = 0 which is true if H = HT. Therefore, the two conditions are natural for
the definition of a projection matrix.

More interestingly, a project matrix has a more explicit form as stated below.

Theorem A.5 If an n × p matrix X has p linearly independent columns, then H =
X(XTX)−1XT is a projection matrix. Conversely, if an n × n matrix H is a projection
matrix with rank p, then H = X(XTX)−1XT for some n× p matrix X with linearly inde-
pendent columns.

It is relatively easy to verify the first part of Theorem A.5; see Chapter 3. The second part
of Theorem A.5 follows from the eigen-decomposition of H, with the first p eigen-vectors
being the column vectors of X.

Cholesky decomposition

An n×n positive semi-definite matrix A can be decomposed as A = LLT where L is an n×n
lower triangular matrix with non-negative diagonal elements. If A is positive definite, the
decomposition is unique. In general, it is not. Take an arbitrary orthogonal matrix Q, we
have A = LQQTLT = CCT where C = LQ. So we can decompose a positive semi-definite
matrix A as A = CCT, but this decomposition is not unique.

Singular value decomposition (SVD)

Any n×m matrix A can be decomposed as

A = UDV T

where U is n×n orthogonal matrix, V is m×m orthogonal matrix, and D is n×m matrix
with all zeros for the non-diagonal elements. For a tall matrix with n ≥ m, the diagonal
matrix D has many zeros, so we can also write

A = UDV T

where U is n×m matrix with orthonormal columns (UTU = Im), V is m×m orthogonal
matrix, and D is m×m diagonal matrix. Similarly, for a wide matrix with n ≤ m, we can
write

A = UDV T

where U is n×n orthogonal matrix, V is m×n matrix with orthonormal columns (V TV =
In), and D is n× n diagonal matrix.

If D has only r ≤ min(m,n) nonzero elements, then we can further simplify the decom-
position as

A = UDV T
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where U is n × r matrix with orthonormal columns (UTU = Ir), V is m × r matrix with
orthonormal columns (V TV = Ir), and D is r×r diagonal matrix. With more explicit forms
of

U = (U1, . . . , Ur), D = diag(d1, . . . , dr), V = (V1, . . . , Vr),

we can write A as

A = (U1, . . . , Ur)

d1 . . .

dr


V

T
1
...
V T
r

 =

r∑
k=1

dkUkV
T

k .

The SVD implies that

AAT = UDDTUT, ATA = V DTDV T,

which are the eigen decompositions of AAT and ATA. This ensures that AAT and ATA have
the same non-zero eigenvalues.

An application of the SVD is to define the pseudoinverse of any matrix. Define D+ as
the pseudoinverse of D with the non-zero elements inverted but the zero elements intact at
zero. Define

A+ = V D+UT =

r∑
k=1

d−1
k VkU

T

k

as the pseudoinverse of A. The definition holds even if A is not a square matrix. We can
verify that

AA+A = A, A+AA+ = A+.

If A is a square nondegenerate matrix, then A+ = A−1 equals the standard definition of
the inverse. In the special case with a symmetric A, its SVD is identical to its eigen decom-
position A = Pdiag(λ1, . . . , λn)P

T. If A = Pdiag(λ1, . . . , λk, 0, . . . , 0)P
T is not invertible,

its pseudoinverse equals

A+ = Pdiag(λ−1
1 , . . . , λ−1

k , 0, . . . , 0)PT

if rank(A) = k < n and λ1, λ1, . . . , λk are the nonzero eigen-values.
Another application of the SVD is the polar decomposition for any square matrix A.

Since A = UDV T = UDUTUV T with orthogonal U and V , we have

A = (AAT)1/2Γ, (A.8)

where (AAT)1/2 = UDUT and Γ = UV T is an orthogonal matrix.

A.2 Vector calculus

If f(x) is a function from Rp to R, then we use the notation

∂f(x)

∂x
≡


∂f(x)
∂x1

...
∂f(x)
∂xp


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for the component-wise partial derivative, which must have the same dimension as x. It is
often called the gradient of f. For example, for a linear function f(x) = xTa = aTx with
a, x ∈ Rp, we have

∂aTx

∂x
=


∂aTx
∂x1

...
∂aTx
∂xp

 =


∂
∑p

j=1 ajxj

∂x1

...
∂
∑p

j=1 ajxj

∂xp

 =

a1...
ap

 = a; (A.9)

for a quadratic function f(x) = xTAx with a symmetric A ∈ Rp×p and x ∈ Rp, we have

∂xTAx

∂x
=


∂xTAx
∂x1

...
∂xTAx
∂xp

 =


∂
∑p

i=1

∑p
j=1 aijxixj

∂x1

...
∂
∑p

i=1

∑p
j=1 aijxixj

∂xp

 =

2a11x1 + · · ·+ 2a1pxp
...

2ap1x1 + · · ·+ 2appxp

 = 2Ax.

These are two important rules of vector calculus used in this book, summarized below.

Proposition A.9 We have

∂aTx

∂x
= a,

∂xTAx

∂x
= 2Ax.

We can also extend the definition to vector functions. If f(x) = (f1(x), . . . , fq(x))
T is a

function from Rp to Rq, then we use the notation

∂f(x)

∂x
≡
(
∂f1(x)

∂x
, · · · , ∂fq(x)

∂x

)
=


∂f1(x)
∂x1

· · · ∂fq(x)
∂x1

...
...

∂f1(x)
∂xp

· · · ∂fq(x)
∂xp

 , (A.10)

which is a p × q matrix with rows corresponding to the elements of x and the columns
corresponding to the elements of f(x). We can easily extend the first result of Proposition
A.9.

Proposition A.10 For B ∈ Rp×q and x ∈ Rp, we have

∂BTx

∂x
= B.

Proof of Proposition A.10: Partition B = (B1, . . . , Bq) in terms of its column vectors.
The jth element of BTx is BT

j x so the j-th column of ∂BTx/∂x is Bj based on Proposition
A.9. This verifies that ∂BTx/∂x equals B. □

Some authors define ∂f(x)/∂x as the transpose of (A.10). I adopt this form for its
natural connection with (A.9) when q = 1. Sometimes, it is indeed more convenient to work
with the transpose of ∂f(x)/∂x. Then I will use the notation

∂f(x)

∂xT
=

(
∂f(x)

∂x

)T

=

(
∂f(x)

∂x1
, · · · , ∂f(x)

∂xp

)
,

which puts the transpose notation on x.
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The above formulas become more powerful in conjunction with the chain rule. For ex-
ample, for any differentiable function h(z) mapping from R to R with derivative h′(z), we
have

∂h(aTx)

∂x
= h′(aTx)a,

∂h(xTAx)

∂x
= 2h′(xTAx)Ax.

For any differentiable function h(z) mapping from Rq to R with gradient ∂h(z)/∂z, we have

∂h(BTx)

∂x
=

∂h(BT
1 x, . . . , B

T
q x)

∂x

=

q∑
j=1

∂h(BT
1 x, . . . , B

T
q x)

∂zj
Bj

= B
∂h(BTx)

∂z
.

Moreover, we can also define the Hessian matrix of a function f(x) mapping from Rp to
R:

∂2f(x)

∂x∂xT
=

(
∂2f(x)

∂xi∂xj

)
1≤i,j≤p

=
∂

∂xT

(
∂f(x)

∂x

)
.

A.3 Homework problems

A.1 Triangle inequality of the inner product

With three unit vectors u, v, w ∈ Rn, prove that√
1− ⟨u,w⟩ ≤

√
1− ⟨u, v⟩+

√
1− ⟨v, w⟩.

Remark: The result is a direct consequence of the standard triangle inequality but it
has an interesting implication. If ⟨u, v⟩ ≥ 1 − ϵ and ⟨v, w⟩ ≥ 1 − ϵ, then ⟨u,w⟩ ≥ 1 − 4ϵ.
This implied inequality is mostly interesting when ϵ is small. It states that when u and v
are highly correlated and v and w are highly correlated, then u and w must also be highly
correlated. Note that we can find counterexamples for the following relationship:

⟨u, v⟩ > 0, ⟨v, w⟩ > 0 but ⟨u,w⟩ = 0.

A.2 Van der Corput inequality

Assume that v, u1, . . . , um ∈ Rn have unit length. Prove that(
m∑
i=1

⟨v, ui⟩

)2

≤
m∑
i=1

m∑
j=1

⟨ui, uj⟩.

Remark: This result is not too difficult to prove, but it says something fundamentally
interesting. If v is correlated with many vectors u1, . . . , um, then at least some vectors in
u1, . . . , um must be correlated.
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A.3 Inverse of a block matrix

Prove that(
A B
C D

)−1

=

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
,

provided that all the inverses of the matrices exist. The two forms of the inverse imply the
Woodbury formula:

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1,

which further implies the Sherman–Morrison formula:

(A+ uvT)−1 = A−1 − (1 + vTA−1u)−1A−1uvTA−1,

where A is an invertible square matrix, and u and v are two column vectors.

A.4 Matrix determinant lemma

Prove that given the identity matrix In and two n-vectors u and v, we have

det(In + uvT) = 1 + vTu.

Further prove that if In is replaced by an n× n invertible matrix A, we have

det(A+ uvT) = (1 + vTA−1u) · det(A).

A.5 Symmetric rank one update of the identity matrix

Given a real number c and a vector x ∈ Rn, consider the matrix In + cxxT, which is a
symmetric n× n matrix. Assume 1 + c∥x∥2 > 0.

1. Find the eigenvalues and eigenvectors of In + cxxT.

2. Use the eigendecomposition to prove that

det(In + cxxT) = 1 + c∥x∥2.

Remark: You can compare this result with Problem A.4.

3. Use the eigendecomposition to prove that

(In + cxxT)−1 = In − c

1 + c∥x∥2
xxT.

Remark: You can compare this result with the Sherman–Morrison formula in Problem
A.3.

4. Use the eigendecomposition to prove that

(In + cxxT)1/2 = In +
c

1 +
√

1 + c∥x∥2
xxT.

5. Use the eigendecomposition to prove that

(In + cxxT)−1/2 = In − c√
1 + c∥x∥2(1 +

√
1 + c∥x∥2)

xxT.
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A.6 Rank one update and positive definiteness

Assume A is an n× n positive definite matrix. Assume b is an n-dimensional vector.
Prove that A− bbT is positive definite if and only if bTA−1b < 1, and A− bbT is positive

semi-definite if and only if bTA−1b ≤ 1.
Remark: Farebrother (1976, Appendix) gave this result. It is not directly used in this

book but is related to the leave-one-out formula in Theorem ??.

A.7 Positive definiteness of the difference of inverses

With scalars a ≥ b > 0, we know that a−1 ≤ b−1. A similar result hold for matrices.
Assume A and B are positive definite matrices. First, prove that if A − I is positive

definite, then I −A−1 is positive definite; if A− I is positive semi-definite, then I −A−1 is
positive semi-definite. Second, prove that if A − B is positive definite, then B−1 − A−1 is
positive definite; if A−B is positive semi-definite, then B−1−A−1 is positive semi-definite.

A.8 Decomposition of a positive semi-definite matrix

Prove that if A is positive semi-definite, then there exists a matrix C such that A = CCT.

A.9 Trace of the product of two matrices

Prove that if A and B are two n× n positive semi-definite matrices, then trace(AB) ≥ 0.
Remark: Use the eigen-decomposition of A =

∑n
i=1 λiγiγ

T
i to prove the result.

In fact, a stronger result holds. If two n×n symmetric matrices A and B have eigenvalues

λ1 ≥ · · · ≥ λn, µ1 ≥ · · · ≥ µn

respectively, then
n∑

i=1

λiµn+1−i ≤ trace(AB) ≤
n∑

i=1

λiµi.

The result is due to Von Neumann (1937) and Ruhe (1970). See also Chen and Li (2019,
Lemma 4.12).

A.10 Trace of the product of two matrices and positive semi-definiteness

This problem gives the other direction of Problem A.9.
Assume A is a symmetric matrix. Prove that A is positive semi-definite if and only if

trace(AB) ≥ 0 for all positive semi-definite matrices B.
Remark: One direction of this statement is in Problem A.9. We only need to prove the

other direction. Theobald (1974) used it to analyze ridge regression.

A.11 Vector calculus

What is the formula for ∂xTAx/∂x if A is not symmetric in Proposition A.9?
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Random Variables

This Appendix reviews the basics of random variables. Let “IID” denote “independent and

identically distributed”, “
iid∼” denote a sequence of random variables that are IID with some

common distribution, and “ ” denote independence between random variables.
Define Euler’s Gamma function as

Γ(z) =

∫ ∞

0

xz−1e−xdx, (z > 0),

which is a natural extension of the factorial since Γ(n) = (n − 1)!. Further, define the
digamma function as ψ(z) = d log Γ(z)/dz and the trigamma function ψ′(z) as the derivative
of ψ(z). In R, we can use

1 gamma(z)

2 lgamma(z)

3 digamma(z)

4 trigamma(z)

to compute Γ(z), log Γ(z), ψ(z), and ψ′(z).

B.1 Some important univariate random variables

B.1.1 Normal, chi-squared, t and F

The standard Normal random variable Z ∼ N(0, 1) has density

f(z) = (2π)−1/2 exp
(
−z2/2

)
.

A Normal random variable X has mean µ and variance σ2, denoted by N(µ, σ2), if X =
µ+ σZ. We can show that X has density

f(x) = (2π)1/2 exp
{
−(x− µ)2/(2σ2)

}
.

A chi-squared random variable with degrees of freedom n, denoted by Qn ∼ χ2
n, can be

represented as

Qn =

n∑
i=1

Z2
i ,

where Zi
iid∼ N(0, 1). We can show that Qn has density

fn(q) = qn/2−1 exp(−q/2)
/{

2n/2Γ(n/2)
}
, (q > 0). (B.1)

35
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We can verify that the above density (B.1) is well-defined even if we change the integer n
to be an arbitrary positive real number ν, and call the corresponding random variable Qν

a chi-squared random variable with degrees of freedom ν, denoted by Qν ∼ χ2
ν .

A t random variable with degrees of freedom ν can be represented as

tν =
Z√
Qν/ν

where Z ∼ N(0, 1), Qν ∼ χ2
ν , and Z Qν .

An F random variable with degrees of freedom (r, s) can be represented as

F =
Qr/r

Qs/s

where Qr ∼ χ2
r, Qs ∼ χ2

s, and Qr Qs.

B.1.2 Beta–Gamma duality

The Gamma(α, β) random variable with parameters α, β > 0 has density

f(x) =
βα

Γ(α)
xα−1e−βx, (x > 0). (B.2)

The Beta(α, β) random variable with parameters α, β > 0 has density

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (0 < x < 1).

These two random variables are closely related as shown in Theorem B.1 below.

Theorem B.1 (Beta–Gamma duality) If X ∼ Gamma(α, θ), Y ∼ Gamma(β, θ) and
X Y , then

1. X + Y ∼ Gamma(α+ β, θ),

2. X/(X + Y ) ∼ Beta(α, β),

3. X + Y X/(X + Y ).

Another simple but useful fact is that χ2 is a special Gamma random variable. Com-
paring the densities in (B.1) and (B.2), we obtain the following result.

Proposition B.1 χ2
n ∼ Gamma(n/2, 1/2).

We can also calculate the moments of the Gamma and Beta distributions.

Proposition B.2 If X ∼ Gamma(α, β), then

E(X) =
α

β
,

var(X) =
α

β2
.

Proposition B.3 If X ∼ Gamma(α, β), then

E(logX) = ψ(α)− log β,

var(logX) = ψ′(α).
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Proposition B.4 If X ∼ Beta(α, β), then

E(X) =
α

α+ β
,

var(X) =
αβ

(α+ β)2(α+ β + 1)
.

Proposition B.5 If X ∼ Beta(α, β), then

E(logX) = ψ(α)− ψ(α+ β),

var(logX) = ψ′(α)− ψ′(α+ β).

I leave the proofs of the above propositions to Problem B.3.

B.1.3 Exponential, Laplace, and Gumbel distributions

An Exponential(λ) random variable X ≥ 0 has density f(x) = λe−λx, mean 1/λ, median
log 2/λ and variance 1/λ2. The standard Exponential random variable X0 has λ = 1, and
X0/λ generates Exponential(λ).

An important feature of Exponential(λ) is the memoryless property.

Proposition B.6 (memoryless property of Exponential) If X ∼ Exponential(λ),
then

pr(X ≥ x+ c | X ≥ c) = pr(X ≥ x).

Proposition B.6 states that if X represents the survival time, then the probability of
surviving another x time is always the same no matter how long the existing survival time
is. I leave the proof of Proposition B.6 to Problem B.4.

The minimum of independent exponential random variables also follows an exponential
distribution.

Proposition B.7 Assume that Xi ∼ Exponential(λi) are independent (i = 1, . . . , n). Then

X = min(X1, . . . , Xn) ∼ Exponential(λ1 + · · ·+ λn)

and

pr(Xi = X) =
λi

λ1 + · · ·+ λn
.

I leave the proof of Proposition B.7 to Problem B.5. Theorem ?? states a more general
result without assuming the Exponential distribution.

The difference between two IID exponential random variables follows the Laplace dis-
tribution.

Proposition B.8 If y1 and y2 are two IID Exponential(λ), then y = y1 − y2 has density

λ

2
exp(−λ|c|), −∞ < c <∞

which is the density of a Laplace distribution with mean 0 and variance 2/λ2.

I leave the proof of Proposition B.8 to Problem B.6.
If X0 is the standard exponential random variable, then we define the Gumbel(µ, β)

random variable as
Y = µ− β logX0.
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The standard Gumbel distribution has µ = 0 and β = 1, with cumulative distribution
function (CDF)

F (y) = exp(−e−y), y ∈ R
and density

f(y) = exp(−e−y)e−y, y ∈ R.
By definition and Proposition B.7, we can verify that the maximum of IID Gumbels is

also Gumbel.

Proposition B.9 If Y1, . . . , Yn are IID Gumbel(µ, β), then

max
1≤i≤n

Yi ∼ Gumbel(µ+ β logn, β).

If Y1, . . . , Yn are independent Gumbel(µi, 1), then

max
1≤i≤n

Yi ∼ Gumbel

(
log

n∑
i=1

eµi , 1

)
.

I leave the proof to Problem B.7.

B.2 Multivariate distributions

A random vector (X1, . . . , Xn)
T is a vector consisting of n random variables. If all compo-

nents are continuous, we can define its joint density fX1···Xn
(x1, . . . , xn).

For a random vector
(
X
Y

)
with X and Y possibly being vectors, if it has joint density

fXY (x, y), then we can obtain the marginal distribution of X

fX(x) =

∫
fXY (x, y)dy

and define the conditional density

fY |X(y | x) = fXY (x, y)

fX(x)
if fX(x) ̸= 0.

Based on the conditional density, we can define the conditional expectation of any function
of Y as

E {g(Y ) | X = x} =

∫
g(y)fY |X(y | x)dy

and the conditional variance as

var {g(Y ) | X = x} = E
[
{g(Y )}2 | X = x

]
− [E {g(Y ) | X = x}]2 .

In the above definitions, the conditional mean and variance are both deterministic functions
of x. We can replace x by the random variable X to define E {g(Y ) | X} and var {g(Y ) | X},
which are functions of the random variable X and are thus random variables.

Below are two important laws of conditional expectation and variance.

Theorem B.2 (Law of total expectation) We have

E(Y ) = E {E(Y | X)} .

Theorem B.3 (Law of total variance or analysis of variance) We have

var(Y ) = E {var(Y | X)}+ var {E(Y | X)} .
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Independence

Random variables (X1, . . . , Xn) are mutually independent if

fX1···Xn
(x1, . . . , xn) = fX1

(x1) · · · fXn
(xn).

In the definition of independence, each of (X1, . . . , Xn) can be vectors. We have the following
rules under independence.

Proposition B.10 If X Y , then h(X) g(Y ) for any functions h(·) and g(·).

Proposition B.11 If X Y , then

fXY (x, y) = fX(x)fY (y),

fY |X(y | x) = fY (y),

E {g(Y ) | X} = E {g(Y )} ,
E {g(Y )h(X)} = E {g(Y )}E {h(X)} .

Expectations of random vectors or random matrices

For a random matrix W = (wij), we define E(W ) = (E(wij)). For constant matrices A and
C, we can verify that

E(AW + C) = AE(W ) + C,

E(AWC) = AE(W )C.

Covariance between two random vectors

If W ∈ Rr and Y ∈ Rs, then their covariance

cov(W,Y ) = E
[
{W − E(W )} {Y − E(Y )}T

]
is an r × s matrix. As a special case,

cov(Y ) = cov(Y, Y ) = E
[
{Y − E(Y )} {Y − E(Y )}T

]
= E(Y Y T)− E(Y )E(Y )T.

For a scalar random variable, cov(Y ) = var(Y ).

Proposition B.12 For A ∈ Rr×n, Y ∈ Rn and C ∈ Rr, we have

cov(AY + C) = Acov(Y )AT.

Using Proposition B.12, we can verify that for any n-dimensional random vector,
cov(Y ) ⪰ 0 because for all x ∈ Rn, we have

xTcov(Y )x = cov(xTY ) = var(xTY ) ≥ 0.

Proposition B.13 For two random vectors W and Y , we have

cov(AW + C,BY +D) = Acov(W,Y )BT

and

cov(AW +BY ) = Acov(W )AT +Bcov(Y )BT +Acov(W,Y )BT +Bcov(Y,W )AT.

Similar to Theorem B.3, we have the following decomposition of the covariance.

Theorem B.4 (Law of total covariance) We have

cov (Y,W ) = E {cov (Y,W | X)}+ cov {E(Y | X), E(W | X)} .
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B.3 Multivariate Normal and its properties

I use a generative definition of the multivariate Normal random vector. First, Z is a standard

Normal random vector if Z = (Z1, . . . , Zn)
T has components Zi

iid∼ N(0, 1). Given a mean
vector µ and a positive semi-definite covariance matrix Σ, define a Normal random vector
Y ∼ N(µ,Σ) with mean µ and covariance Σ if Y can be represented as

Y = µ+AZ, (B.3)

where A satisfies Σ = AAT. We can verify that cov(Y ) = Σ, so indeed Σ is its covariance
matrix. If Σ ≻ 0, then we can verify that Y has density

fY (y) = (2π)−n/2 {det(Σ)}−1/2
exp

{
−(y − µ)TΣ−1(y − µ)/2

}
. (B.4)

We can easily verify the following result by calculating the density.

Proposition B.14 If Z ∼ N(0, In) and Γ is an orthogonal matrix, then ΓZ ∼ N(0, In).

I do not define multivariate Normal based on the density (B.4) because it is only well
defined with a positive definite Σ. I do not define multivariate Normal based on the char-
acteristic function because it is more advanced than the level of this book. Definition (B.3)
does not require Σ to be positive definite and is more elementary. However, it has a subtle
issue of uniqueness. Although the decomposition Σ = AAT is not unique, the resulting dis-
tribution Y = µ+AZ is. We can verify this using the Polar decomposition in (A.8). Because

A = Σ1/2Γ where Γ is an orthogonal matrix, we have Y = µ+Σ1/2ΓZ = µ+Σ1/2Z̃ where
Z̃ = ΓZ is a standard Normal random vector by Proposition B.14. Importantly, although
the definition (B.3) can be general, we usually use the following representation

Y = µ+Σ1/2Z.

Theorem B.5 Assume that(
Y1
Y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Then Y1 Y2 if and only if Σ12 = 0.

I leave the proof of Theorem B.5 as Problem B.8.

Proposition B.15 If Y ∼ N(µ,Σ), then BY +C ∼ N(Bµ+ C,BΣBT), that is, any linear
transformation of a Normal random vector is also a Normal random vector.

I leave the proof of Proposition B.15 as Problem B.9.
An obvious corollary of Proposition B.15 is that if X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2)

are independent, then X1+X2 ∼ N(µ1+µ2, σ
2
1+σ

2
2). So the summation of two independent

Normals is also Normal. Remarkably, the reverse of the result is also true.

Theorem B.6 (Levy–Cramer) If X1 X2 and X1+X2 is Normal, then both X1 and X2

must be Normal.

The statement of Theorem B.6 is extremely simple. But its proof is non-trivial and
beyond the scope of this book. See Benhamou et al. (2018) for a proof.
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Theorem B.7 Assume(
Y1
Y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

1. The marginal distributions are Normal:

Y1 ∼ N(µ1,Σ11) ,

Y2 ∼ N(µ2,Σ22) .

2. If Σ22 ≻ 0, then the conditional distribution is Normal:

Y1 | Y2 = y2 ∼ N
(
µ1 +Σ12Σ

−1
22 (y2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21

)
;

Y2 is independent of the residual

Y1 − Σ12Σ
−1
22 (Y2 − µ2) ∼ N

(
µ1,Σ11 − Σ12Σ

−1
22 Σ21

)
.

I review some other results of the multivariate Normal below.

Proposition B.16 Assume Y ∼ N(µ, σ2In). If AB
T = 0, then AY BY .

Proposition B.17 Assume(
Y1
Y2

)
∼ N

((
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
,

where ρ is the correlation coefficient defined as

ρ =
cov(Y1, Y2)√
var(Y1)var(Y2)

.

Then the conditional distribution is

Y1 | Y2 = y2 ∼ N

(
µ1 + ρ

σ1
σ2

(y2 − µ2), σ
2
1(1− ρ2)

)
.

B.4 Quadratic forms of random vectors

Given a random vector Y and a symmetric matrix A, we can define the quadratic form
Y TAY , which is a random variable playing an important role in statistics. The first theorem
is about its mean.

Theorem B.8 If Y has mean µ and covariance Σ, then

E(Y TAY ) = trace(AΣ) + µTAµ.

The proof below uses the following three basic facts.

(F1) E(Y Y T) = cov(Y ) + E(Y )E(Y T) = Σ + µµT.

(F2) For an n × n symmetric random matrix W = (wij), we have E {trace(W )} =
trace {E(W )} because E (

∑n
i=1 wii) =

∑n
i=1E(wii).
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(F3) If BC and CB are both well defined, then trace(BC) = trace(CB).

Proof of Theorem B.8: The conclusion follows from

E(Y TAY ) = E{trace(Y TAY )} (because Y TAY is a scalar)

= E{trace(AY Y T)} (by (F3))

= trace{E(AY Y T)} (by (F2))

= trace{AE(Y Y T)}
= trace{A(Σ + µµT)} (by (F1))

= trace(AΣ) + trace(AµµT)

= trace(AΣ) + trace(µTAµ) (by (F3))

= trace(AΣ) + µTAµ. (because µTAµ is a scalar)

□
The variance of the quadratic form is much more complicated for a general random

vector. For the multivariate Normal random vector, we have the following formula.

Theorem B.9 If Y ∼ N(µ,Σ), then

var(Y TAY ) = 2trace(AΣAΣ) + 4µTAΣAµ.

I relegate the proof as Problem B.15.
From its definition, χ2

n is the summation of the squares of n IID standard Normal random
variables. It is closely related to quadratic forms of multivariate Normals.

Theorem B.10 We have the following results on the χ2 random variables.

1. If Y ∼ N(µ,Σ) is an n-dimensional random vector with Σ ≻ 0, then

(Y − µ)TΣ−1(Y − µ) ∼ χ2
n.

If rank(Σ) = k ≤ n, then
(Y − µ)TΣ+(Y − µ) ∼ χ2

k.

2. If Y ∼ N(0, In) and H is a projection matrix of rank K, then

Y THY ∼ χ2
K .

3. If Y ∼ N(0, H) where H is a projection matrix of rank K, then

Y TY ∼ χ2
K .

Proof of Theorem B.10:

1. I only prove the general result with rank(Σ) = k ≤ n. By definition, Y = µ + Σ1/2Z
where Z is a standard Normal random vector, then

(Y − µ)TΣ+(Y − µ) = ZTΣ1/2Σ+Σ1/2Z

=

k∑
i=1

Z2
i ∼ χ2

k.



Homework problems 43

2. Using the eigendecomposition of the projection matrix

H = Pdiag {1, . . . , 1, 0, . . . , 0}PT

with K 1’s in the diagonal matrix, we have

Y THY = Y TPdiag {1, . . . , 1, 0, . . . , 0}PTY

= ZTdiag {1, . . . , 1, 0, . . . , 0}Z,

where Z = (Z1, . . . , Zn)
T = PTY ∼ N(0, PTP ) = N(0, In) is a standard Normal random

vector. So

Y THY =

K∑
i=1

Z2
i ∼ χ2

K .

3. Writing Y = H1/2Z where Z is a standard Normal random vector, we have

Y TY = ZTH1/2H1/2Z = ZTHZ ∼ χ2
K

using the second result.

□

B.5 Homework problems

B.1 Uniform moments

Let X be Uniform(0, 1). Find E(Xk) for k = 1, 2, . . ..

B.2 Beta-Gamma duality

Prove Theorem B.1.
Remark: Calculate the joint density of (X + Y,X/(X + Y )).

B.3 Gamma and Beta moments

Prove Propositions B.2–B.5.

B.4 Memoryless property of Exponential

Prove Proposition B.6.

B.5 Minimum of independent Exponentials

Prove Proposition B.7.

B.6 Laplace as the difference between two IID Exponentials

Prove Proposition B.8.

B.7 Maximums of Gumbels

Prove Proposition B.9.
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B.8 Independence and uncorrelatedness in the multivariate Normal

Prove Theorem B.5.

B.9 Linear transformation of Normal

Prove Proposition B.15.

B.10 Transformation of bivariate Normal

Prove that if (Y1, Y2)
T follows a bivariate Normal distribution(

Y1
Y2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

then
Y1 + Y2 Y1 − Y2.

Remark: This result holds for arbitrary ρ.

B.11 Normal conditional distributions

Suppose that (X1, X2) has the joint distribution

fX1X2
(x1, x2) ∝ C0 exp

{
−1

2

(
Ax21x

2
2 + x21 + x22 − 2Bx1x2 − 2C1x1 − 2C2x2

)}
,

where C0 is the normalizing constant depending on (A,B,C1, C2). To ensure that this is a
well-defined density, we need A ≥ 0, and if A = 0 then |B| < 1.

Prove that the conditional distributions are

X1 | X2 = x2 ∼ N

(
Bx2 + C1

Ax22 + 1
,

1

Ax22 + 1

)
,

X2 | X1 = x1 ∼ N

(
Bx1 + C2

Ax21 + 1
,

1

Ax21 + 1

)
.

Remark: For a bivariate Normal distribution, the two conditional distributions are both
Normal. The converse of the statement is not true. That is, even if the two conditional
distributions are both Normal, the joint distribution may not be bivariate Normal. Gelman
and Meng (1991) reported this result.

B.12 Inverse of covariance matrix and conditional independence in multivariate Normal

Assume X = (X1, . . . , Xp)
T ∼ N(µ,Σ). Denote the inverse of its covariance matrix by

Σ−1 = (σjk)1≤j,k≤p.
Prove that for any pair of j ̸= k, we have

σjk = 0 ⇐⇒ Xj Xk | X\(j,k),

where X\(j,k) contains all the variables except Xj and Xk.
Remark: This basic property of multivariate Normal motivates the Gaussian Graphical

Model, which uses an undirected graph to illustrate the conditional independence relation-
ship among random variables X1, . . . , Xp (Dempster, 1972). In particular, σjk = 0 if and
only if the edge between Xj and Xk is missing.
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B.13 Independence of linear and quadratic functions of the multivariate Normal

Assume Y ∼ N(µ, σ2In). For an n dimensional vector a and two n× n symmetric matrices
A and B, prove that

1. if Aa = 0, then aTY Y TAY ;

2. if AB = BA = 0, then Y TAY Y TBY .

Remark: To simplify the proof, you can use the pseudoinverse of A which satisfies
AA+A = A. In fact, a strong result holds. Ogasawara and Takahashi (1951) proved the
following theorem; see also Styan (1970, Theorem 5).

Theorem B.11 Assume Y ∼ N(µ,Σ). Define quadratic forms Y TAY and Y TBY for two
symmetric matrices A and B. The Y TAY and Y TBY are independent if and only if

ΣAΣBΣ = 0, ΣAΣBµ = ΣBΣAµ = 0, µTAΣBµ = 0.

B.14 Independence of the sample mean and variance of IID Normals

Theorem B.12 below is a fundamental result on IID Normals. Prove Theorem B.12.

Theorem B.12 If X1, . . . , Xn
iid∼ N(µ, σ2), then X̄ S2, where X̄ = n−1

∑n
i=1Xi and

S2 = (n− 1)−1
∑n

i=1(Xi − X̄)2.

Remark: A remarkable result due to Geary (1936) ensures the reverse of Theorem B.12.
That is, if X1, . . . , Xn are IID and X̄ S2, then X1, . . . , Xn must be Normals. See Lukacs
(1942) and Benhamou et al. (2018) for proofs.

B.15 Variance of the quadratic form of the multivariate Normal

First prove Theorem B.9 with a symmetric A. Then prove Theorem B.13 below.

Theorem B.13 Assume A1 and A2 are symmetric matrices. If Y ∼ N(µ,Σ), then

cov(Y TA1Y, Y
TA2Y ) = 2trace(A1ΣA2Σ) + 4µTA1ΣA2µ.

Remark: Theorem B.9 is a special case of Theorem B.13. You can prove Theorem B.13
and then Theorem B.9 follows immediately. You can also first prove Theorem B.9 and then
use it to prove Theorem B.13. You can write Y = µ + Σ1/2Z and reduce the problem to
calculating the moments of standard Normals.
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