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Statistical Model

• Let X1, · · · , Xn be random variables (or random vectors) and
suppose that we observe x1, · · · , xn, which can be thought of as
outcomes of the random variables X1, · · · , Xn.

• Suppose that the joint distribution of X = (X1, · · · , Xn) is
unknown but belongs to some particular family of distributions.
Such a family of distributions is called a statistical model.

• It is convenient to index the distributions belonging to a statistical
model by a parameter θ; θ typically represents the unknown or
unspecified part of the model. We can then write

X = (X1, · · · , Xn) ∼ Fθ for θ ∈ Θ,

where Fθ is the joint distribution function of X and Θ is the set of
possible values for the parameter θ; we will call the set Θ the
parameter space.
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Statistical Model

• In general, θ can be either a single real-valued parameter or a
vector of parameters; in this latter case, we will often write
θ = (θ1, · · · , θp) to emphasize that we have a vector-valued
parameter.

• We write Pθ(A), Eθ(X), and Varθ(X) to denote (respectively)
probability, expected value, and variance with respect to a
distribution with unknown parameter θ.

• We usually assume that Θ is a subset of some Euclidean space;
such a model is often called a parametric model.

• Models whose distributions cannot be indexed by a finite
dimensional parameter are often (somewhat misleadingly) called
non-parametric models.
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Identifiability

• For a given parameter θ corresponds to a single distribution Fθ.
However, this does not rule out the possibility that there may
exist distinct parameter values θ1 and θ2 such that Fθ1 = Fθ2 .

• We often require that a given model, or more precisely, its
parametrization be identifiable; a model is said to have an
identifiable parametrization (or to be an identifiable model) if
Fθ1 = Fθ2 implies that θ1 = θ2.

• A nonidentifiable parametrization can lead to problems in
estimation of the parameters in the model.

4/29



Example: Poisson Model

• Suppose that X1, · · · , Xn are i.i.d. Poisson random variables
with mean λ.

• The joint frequency function of X = (X1, · · · , Xn) is

f(x;λ) =

n∏
i=1

exp(−λ)λxi

xi!

for x1, · · · , xn = 0, 1, 2, · · · .

• The parameter space for this parametric model is {λ : λ > 0}.
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Example: non-parametric and semi-parametric model

• Suppose that X1, · · · , Xn are i.i.d. random variables with a
continuous distribution function F that is unknown.

• The parameter space for this model consists of all possible
continuous distributions. These distributions cannot be indexed
by a finite dimensional parameter and so this model is
non-parametric.

• We may also assume that F (x) has a density f(x− θ) where θ is
an unknown parameter and f is an unknown density function
satisfying f(x) = f(−x).

• This model is also non-parametric but depends on the
real-valued parameter θ. (This might be considered a
semiparametric model because of the presence of θ.)
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Example: linear Gaussian regression

• Suppose that X1, · · · , Xn are independent Normal random
variables with Eθ (Xi) = β0 + β1ti + β2si (where t1, · · · , tn and
s1, · · · , sn are known constants) and Varθ (Xi) = σ2; the
parameter space is

{θ = (β0, β1, β2, σ) : −∞ < β0, β1, β2 < ∞, σ > 0} .

• The parametrization for this model is identifiable if, and only if,
the vectors

z0 =


1
...
1

 , z1 =


t1
...
tn

 , and z2 =


s1
...
sn


are linearly independent.
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Exponential families

• Suppose that X1, · · · , Xn have a joint distribution Fθ where
θ = (θ1, · · · , θp) is an unknown parameter.

• We say that the family of distributions {Fθ} is a k-parameter
exponential family if the joint density or joint frequency function of
(X1, · · · , Xn) is of the form

f(x;θ) = exp

[
k∑

i=1

ci(θ)Ti(x)− d(θ) + S(x)

]

for x = (x1, · · · , xn) ∈ A where A does not depend on the
parameter θ.

• It is important to note that k need not equal p, the dimension of θ,
although, in many cases, they are equal.
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Binomial distribution

• Suppose that X has a Binomial distribution with parameters n

and θ where θ is unknown.

• The frequency function of X is

f(x; θ) =

(
n

x

)
θx(1− θ)n−x

= exp

[
ln

(
θ

1− θ

)
x+ n ln(1− θ) + ln

(
n

x

)]
for x ∈ A = {0, 1, · · · , n}.

• The distribution of X has a one-parameter exponential family.

9/29



Gamma Distribution

• Suppose that X1, · · · , Xn are i.i.d. Gamma random variables
with unknown shape parameter α and unknown scale parameter
λ.

• The joint density function of X = (X1, · · · , Xn) is

f(x;α, λ)

=

n∏
i=1

[
λαxα−1

i exp (−λxi)

Γ(α)

]

= exp

[
(α− 1)

n∑
i=1

ln (xi)− λ

n∑
i=1

xi + nα ln(λ)− n ln(Γ(α))

]

(for x1, · · · , xn > 0 ) and so the distribution of X is a
two-parameter exponential family.
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Gaussian distribution

• Suppose that X1, · · · , Xn are i.i.d. Normal random variables with
mean θ and variance θ2 where θ > 0.

• The joint density function of (X1, · · · , Xn) is

f(x; θ)

=

n∏
i=1

[
1

θ
√
2π

exp

(
− 1

2θ2
(xi − θ)

2

)]

= exp

[
− 1

2θ2

n∑
i=1

x2
i +

1

θ

n∑
i=1

xi −
n

2

(
1 + ln

(
θ2
)
+ ln(2π)

)]
,

and so A = Rn. Note that this is a two-parameter exponential
family despite the fact that the parameter space is
one-dimensional.
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Poisson distribution

Suppose that X1, · · · , Xn are independent Poisson random variables
with E (Xi) = exp (α+ βti) where t1, · · · , tn are known constants.
Setting X = (X1, · · · , Xn), the joint frequency function of X is

f(x;α, β)

=

n∏
i=1

[
exp (− exp (α+ βti)) exp (αxi + βxiti)

x!

]

= exp

[
α

n∑
i=1

xi + β

n∑
i=1

xiti +

n∑
i=1

exp (α+ βti)−
n∑

i=1

ln (xi!)

]
.

This is a two-parameter exponential family model; the set A is simply
{0, 1, 2, 3, · · · }n.
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Uniform distribution

Suppose that X1, · · · , Xn are i.i.d. Uniform random variables on the
interval [0, θ]. The joint density function of X = (X1, · · · , Xn) is

f(x; θ) =
1

θn
for 0 ≤ x1, · · · , xn ≤ θ

The region on which f(x; θ) is positive clearly depends on θ and so
this model is not an exponential family model.
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Mean and variance of exponential distribution

Proposition
Suppose that X = (X1, · · · , Xn) has a one-parameter exponential
family distribution with density or frequency function

f(x; θ) = exp[c(θ)T (x)− d(θ) + S(x)]

for x ∈ A where

(a) the parameter space Θ is open,

(b) c(θ) is a one-to-one function on Θ,

(c) c(θ), d(θ) are twice differentiable functions on Θ.

Then
Eθ[T (X)] =

d′(θ)

c′(θ)

and Varθ[T (X)] =
d′′(θ)c′(θ)− d′(θ)c′′(θ)

[c′(θ)]
3
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Statistics

• Suppose that the model for X = (X1, · · · , Xn) has a parameter
space Θ.

• Since the true value of the parameter θ (or, equivalently, the true
distribution of X ) is unknown, we would like to summarize the
available information in X without losing too much information
about the unknown parameter θ.

• At this point, we are not interested in estimating θ per se but
rather in determining how to best use the information in X.
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Statistics

• Define a statistic T = T (X) to be a function of X that does not
depend on any unknown parameter; that is, the statistic T

depends only on observable random variables and known
constants.

• A statistic can be real- or vector-valued.

Example

T (X) = X̄ = n−1
∑n

i=1 Xi. Since n (the sample size) is known, T is
a statistic.

Example

T (X) =
(
X(1), · · · , X(n)

)
where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the

order statistics of X. Since T depends only on the values of X, T is
a statistic.
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Statistics

• It is important to note that any statistic is itself a random variable
and so has its own probability distribution; this distribution may or
may not depend on the parameter θ.

• Ideally, a statistic T = T (X) should contain as much information
about θ as X does.

• However, this raises several questions.
- For example, how does one determine if T and X contain the

same information about θ ?
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Ancillary Statistics

Definition (Ancillary statistics)
A statistic T is an ancillary statistic (for θ ) if its distribution is
independent of θ; that is, for all θ ∈ Θ, T has the same distribution.
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Example: ancillary statistics in normal sample

• Suppose that X1 and X2 are independent Normal random
variables each with mean µ and variance σ2 (where σ2 is
known).

• Let T = X1 −X2; then T has a Normal distribution with mean 0
and variance 2σ2. Thus T is ancillary for the unknown parameter
µ.

• However, if both µ and σ2 were unknown, T would not be
ancillary for θ =

(
µ, σ2

)
. (The distribution of T depends on σ2 so

T contains some information about σ2.)
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Example: ancilarity range w.r.t translation parameter

• Suppose that X1, · · · , Xn are i.i.d. random variables with density
function

f(x;µ, η) =
1

2η
for µ− η ≤ x ≤ µ+ η.

• Define a statistic R = X(n) −X(1), which is the sample range of
X1, · · · , Xn.

• The density function of R is

fR(r) =
n(n− 1)rn−2

(2η)n−1

(
1− r

2η

)
for 0 ≤ r ≤ 2η

which depends on η but not µ. Thus R is ancillary for µ.

20/29



Uniform distribution

Suppose that X1, · · · , Xn are i.i.d. Uniform random variables on the
interval [0, θ] where θ > 0 is an unknown parameter. Define two
statistics, S = min (X1, · · · , Xn) and T = max (X1, · · · , Xn). The
density of S is

fS(x; θ) =
n

θ

(
1− x

θ

)n−1

for 0 ≤ x ≤ θ,

while the density of T is

fT (x; θ) =
n

θ

(x
θ

)n−1

for 0 ≤ x ≤ θ.

• Note that the densities of both S and T depend on θ and so
neither is ancillary for θ. However, as n increases, it becomes
clear that the density of S is concentrated around 0 for all
possible values of θ while the density of T is concentrated
around θ.

• This seems to indicate that T provides more information about θ
than does S.
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Sufficiency

• The first mention of sufficiency was made by Fisher (1920) in
which he considered the estimation of the variance σ2 of a
Normal distribution based on i.i.d. observations X1, · · · , Xn.

• In particular, he considered estimating σ2 based on the statistics

T1 =

n∑
i=1

∣∣Xi − X̄
∣∣ and T2 =

n∑
i=1

(
Xi − X̄

)2
where X̄ is the average of X1, · · · , Xn.

• Fisher showed that the distribution of T1 conditional on T2 = t

does not depend on the parameter σ while the distribution of T2

conditional on T1 = t does depend on σ.
• He concluded that all the information about σ2 in the sample was

contained in the statistic T2 and that any estimate of σ2 should
be based on T2;

• Any estimate of σ2 based on T1 could be improved by using the
information in T2 while T2 could not be improved by using T1. 22/29



Sufficient statistics

Definition (Sufficient statistics)
A statistic T = T (X) is a sufficient statistic for a parameter θ if for all
sets A, Pθ[X ∈ A | T = t] is independent of θ for all t in the range of
T .

• Sufficient statistics are not unique; from the definition of
sufficiency, it follows that if g is a one-to-one function over the
range of the statistic T then g(T ) is also sufficient.

• It also follows that if T is sufficient for θ then the distribution of
any other statistic S = S(X) conditional on T is independent of θ.
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Sufficient statistics in binomial model

• Suppose that X1, · · · , Xk are independent random variables
where Xi has a Binomial distribution with parameters ni (known)
and θ (unknown).

• Let T = X1 + · · ·+Xk; T will also have a Binomial distribution
with parameters m = n1 + · · ·+ nk and θ.

• Show that T is sufficient.
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Neyman factorization Lemma

Theorem (Neyman Factorization Criterion)
Suppose that X = (X1, · · · , Xn) has a joint density or frequency
function f(x; θ)(θ ∈ Θ). Then T = T (X) is sufficient for θ if, and
only if,

f(x; θ) = g(T (x); θ)h(x).

(Both T and θ can be vector-valued.)
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Sufficiency in uniform model

Suppose that X1, · · · , Xn are i.i.d. random variables with density
function

f(x; θ) =
1

θ
for 0 ≤ x ≤ θ

• Show that X(n) is sufficient.
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Sufficient statistics in exponential model

Suppose that X = (X1, · · · , Xn) have a distribution belonging to a
k-parameter exponential family with joint density or frequency
function satisfying

f(x; θ) = exp

[
k∑

i=1

ci(θ)Ti(x)− d(θ) + S(x)

]
I(x ∈ A)

• Show that the statistic

T = (T1(X), · · · , Tk(X))

is sufficient for θ.
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Minimal sufficient statistics

• There are two notions of what is meant by the ”best possible”
reduction of the data.

• The first of these is minimal sufficiency; a sufficient statistic T is
minimal sufficient if for any other sufficient statistic S, there exists
a function g such that T = g(S).

• Thus a minimal sufficient statistic is the sufficient statistic that
represents the maximal reduction of the data that contains as
much information about the unknown parameter as the data
itself.
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Complete sufficient statistics

• A second (and stronger) notion is completeness. If X ∼ Fθ then
a statistic T = T (X) is complete if Eθ(g(T )) = 0 for all θ ∈ Θ

implies that Pθ(g(T ) = 0) = 1 for all θ ∈ Θ.

• In particular, if T is complete then g(T ) is ancillary for θ only if
g(T ) is constant; thus a complete statistic T contains no ancillary
information.
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