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Statistical Model

e Let Xy,---, X,, be random variables (or random vectors) and
suppose that we observe =1, - - , z,, which can be thought of as
outcomes of the random variables X3, --- , X,,.

« Suppose that the joint distribution of X = (X1,---,X,,)is
unknown but belongs to some particular family of distributions.
Such a family of distributions is called a statistical model.

* Itis convenient to index the distributions belonging to a statistical
model by a parameter 6; 6 typically represents the unknown or
unspecified part of the model. We can then write

X=Xy, ,Xn)~Fy for 0€c0O,

where Fjy is the joint distribution function of X and © is the set of
possible values for the parameter 6; we will call the set © the
parameter space.
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Statistical Model

In general, 6 can be either a single real-valued parameter or a
vector of parameters; in this latter case, we will often write

0 = (61, ,0,) to emphasize that we have a vector-valued
parameter.

« We write Py(A), Eo(X), and Vary(X) to denote (respectively)
probability, expected value, and variance with respect to a
distribution with unknown parameter 6.

» We usually assume that © is a subset of some Euclidean space;
such a model is often called a parametric model.

* Models whose distributions cannot be indexed by a finite
dimensional parameter are often (somewhat misleadingly) called
non-parametric models.
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Identifiability

» For a given parameter 6 corresponds to a single distribution Fj.
However, this does not rule out the possibility that there may
exist distinct parameter values 6; and 60, such that Fy, = Fy,.

» We often require that a given model, or more precisely, its
parametrization be identifiable; a model is said to have an
identifiable parametrization (or to be an identifiable model) if
Fy, = Fy, implies that 6, = 6,.

* A nonidentifiable parametrization can lead to problems in
estimation of the parameters in the model.
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Example: Poisson Model

» Suppose that Xy, --- , X, are i.i.d. Poisson random variables
with mean .

 The joint frequency function of X = (X4,--- ,X,,) is

) = [] SR

|
Pl a35)
forzy, -+, 2, =0,1,2,---.

» The parameter space for this parametric model is {\ : A > 0}.

5/29



Example: non-parametric and semi-parametric model

» Suppose that Xy, --- , X, are i.i.d. random variables with a
continuous distribution function F that is unknown.

» The parameter space for this model consists of all possible
continuous distributions. These distributions cannot be indexed
by a finite dimensional parameter and so this model is
non-parametric.

+ We may also assume that F(z) has a density f(xz — 6) where 0 is
an unknown parameter and f is an unknown density function

satisfying f(z) = f(—x).

» This model is also non-parametric but depends on the
real-valued parameter . (This might be considered a
semiparametric model because of the presence of 4.)
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Example: linear Gaussian regression

» Suppose that X3, --- , X,, are independent Normal random
variables with Fg (X;) = 8o + S1t; + Ba2s; (where ¢4, -, ¢, and
81, , s, are known constants) and Varg (X;) = o2; the
parameter space is

{0: (50’5176270—) : 7OO</80351752 < OOaO—>O}-

» The parametrization for this model is identifiable if, and only if,
the vectors

z0 = , 21 = 9 and 2z, =

are linearly independent.
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Exponential families

+ Suppose that X3, --- , X,, have a joint distribution F, where
0 = (61, ,0,) is an unknown parameter.

+ We say that the family of distributions {Fy} is a k-parameter
exponential family if the joint density or joint frequency function of
(Xq,---,X,) is of the form

k
f(x;0) = exp Zci(e)Ti(m) —d(6) + S(x)

i=1

forx = (x1, - ,2,) € A where A does not depend on the
parameter 6.

* It is important to note that £ need not equal p, the dimension of 9,
although, in many cases, they are equal.
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Binomial distribution

» Suppose that X has a Binomial distribution with parameters n
and 0 where 6 is unknown.

» The frequency function of X is

(’;) 6(1 — 6)""
— exp {m (199) z+nln(l —6) +In (Z)}

forr € A={0,1,--- ,n}.

f(a;0)

 The distribution of X has a one-parameter exponential family.
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Gamma Distribution

» Suppose that X3, -- , X,, are i.i.d. Gamma random variables
with unknown shape parameter o« and unknown scale parameter
A

 The joint density function of X = (X1, -+, X,,) is
flas o, )

E {)\a exp)( )\xi)]

= exp [(a -1) Zln () — A Zl‘z + naln(A) — nin(T'(«))

i=1 i=1

(for 21, --- ,xz, > 0) and so the distribution of X is a
two-parameter exponential family.
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Gaussian distribution

* Suppose that X3, ---, X,, are i.i.d. Normal random variables with
mean # and variance 6% where 6 > 0.

+ The joint density function of (X1, ---, X,,) is

i (-7
_expl 292235 T Z@ 1+ln(92)+1n(27r)) :

and so A = R". Note that this is a two-parameter exponential
family despite the fact that the parameter space is
one-dimensional.
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Poisson distribution

Suppose that X3, --- , X,, are independent Poisson random variables
with E (X;) = exp (« + (t;) where ¢4, - -+ , ¢, are known constants.
Setting X = (X4,---, X,,), the joint frequency function of X is

f(®;a,B)
- xp (o + Bt;)) exp (az; + Bz;t;)
1:[1[ —exp (a l’!ep(m: T }

= exp [QZ;L'Z- + Bilitz + iexp (a+ Bt;) — iln (12')1 .
i=1 i=1 i=1 i=1

This is a two-parameter exponential family model; the set A is simply
{0,1,2,3,---}".
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Uniform distribution

Suppose that X3, --- , X,, are i.i.d. Uniform random variables on the
interval [0, 8]. The joint density function of X = (Xy,---,X,,) is

1
f(:c;e)zg—n for0<wmzy,---,x, <0

The region on which f(x;0) is positive clearly depends on 6 and so
this model is not an exponential family model.
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Mean and variance of exponential distribution

Proposition
Suppose that X = (X1,---, X,,) has a one-parameter exponential
family distribution with density or frequency function

f(@;0) = explc(0)T (x) — d(0) + S()]

for x € A where

(a) the parameter space © is open,
(b) ¢(0) is a one-to-one function on ©,
(c) c(0),d(0) are twice differentiable functions on ©.

Then
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» Suppose that the model for X = (X;,---, X,,) has a parameter
space O.

» Since the true value of the parameter 6 (or, equivalently, the true
distribution of X ) is unknown, we would like to summarize the
available information in X without losing too much information
about the unknown parameter 6.

+ At this point, we are not interested in estimating 6 per se but
rather in determining how to best use the information in X.
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* Define a T = T(X) to be a function of X that does not
depend on any unknown parameter; that is, the statistic T’
depends only on observable random variables and known
constants.

« A can be real- or vector-valued.

Example

T(X)=X=n"1Y" X;. Since n (the sample size) is known, T is
a statistic.

Example

T(X) = (X(1)7 oo0c ,X(n)) where X(l) < X(g) <...< X(n) are the
order statistics of X. Since 7' depends only on the values of X, T is
a statistic.
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« It is important to note that any statistic is itself a random variable
and so has its own probability distribution; this distribution may or
may not depend on the parameter 6.

« Ideally, a statistic 7" = T'(X) should contain as much information
about 6 as X does.

» However, this raises several questions.
- For example, how does one determine if 7" and X contain the
same information about 6 ?
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Ancillary Statistics

Definition (Ancillary statistics)
A statistic 7" is an ancillary statistic (for 6 ) if its distribution is
independent of ¢; that is, for all € ©,T has the same distribution.
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Example: ancillary statistics in normal sample

» Suppose that X; and X, are independent Normal random
variables each with mean . and variance o2 (where o2 is
known).

e Let T = X; — X>; then T has a Normal distribution with mean 0
and variance 202. Thus T is ancillary for the unknown parameter

1L

+ However, if both ;2 and o were unknown, 7" would not be
ancillary for § = (u, 0?). (The distribution of 7' depends on o2 so
T contains some information about o2.)

19/29



Example: ancilarity range w.r.t translation parameter

« Suppose that X3, -- - , X,, are i.i.d. random variables with density
function
1
fl@sp,m) = o foruy—m<z<u+n.
n

» Define a statistic R = X(,,) — X(1), which is the sample range of
le Tty Xn

» The density function of R is

ol

which depends on 7 but not . Thus R is ancillary for .

fr(r) = —T> for0 <r <2py

2n
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Uniform distribution

Suppose that X1, --- , X,, are i.i.d. Uniform random variables on the
interval [0, 8] where 6 > 0 is an unknown parameter. Define two
statistics, S = min (X3,--- , X,,) and T' = max (Xy,--- , X,,). The
density of S is

(1—5)%1 for 0<z<8,

fs(x;0) = 7

|3

while the density of 7" is

fr(z;0) = (%)n_l for 0<z<8.

|3

» Note that the densities of both S and 7" depend on 6 and so
neither is ancillary for . However, as n increases, it becomes
clear that the density of S is concentrated around 0 for all
possible values of 6 while the density of 7" is concentrated
around 6.
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Sufficiency

* The first mention of sufficiency was made by Fisher (1920) in
which he considered the estimation of the variance o2 of a
Normal distribution based on i.i.d. observations X, --- , X,,.

« In particular, he considered estimating o2 based on the statistics

n

Tl:i:{xi—fq and Tp=) (X;-X)*
=il

i=1

where X is the average of X1,---, X,,.

» Fisher showed that the distribution of 7} conditional on 7, = ¢
does not depend on the parameter o while the distribution of T3
conditional on 7} = ¢ does depend on o.

« He concluded that all the information about o2 in the sample was
contained in the statistic 7> and that any estimate of o should
be based on T5;

+ Any estimate of o2 based on T} could be improved by using the
information in Ty while T3 could not be improved by using 7. 22/29



Sufficient statistics

Definition (Sufficient statistics)

A statistic ' = T'(X) is a sufficient statistic for a parameter ¢ if for all
sets A, Py[X € A | T = t] is independent of ¢ for all ¢ in the range of
T.

« Sufficient statistics are not unique; from the definition of
sufficiency, it follows that if g is a one-to-one function over the
range of the statistic 7" then ¢(T) is also sufficient.

« It also follows that if T" is sufficient for # then the distribution of
any other statistic S = S(X') conditional on 7' is independent of 6.
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Sufficient statistics in binomial model

» Suppose that X1, --- , X are independent random variables
where X, has a Binomial distribution with parameters n,; (known)
and 6 (unknown).

e LetT = X, +---+ X; T will also have a Binomial distribution

with parameters m = n; +--- + ng and 6.

« Show that T is sufficient.
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Neyman factorization Lemma

Theorem (Neyman Factorization Criterion)

Suppose that X = (X1,---,X,,) has a joint density or frequency

function f(x;0)(0 € ©). ThenT = T'(X) is sufficient for 0 if, and
only if,

f(z;0) = g(T'(x); 0)h(z).

(Both T and 6 can be vector-valued.)
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Sufficiency in uniform model

Suppose that X, .-, X,, are i.i.d. random variables with density
function )
flx;0) = 7 foro <z <46

+ Show that X, is sufficient.
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Sufficient statistics in exponential model

Suppose that X = (X3, -, X,,) have a distribution belonging to a
k-parameter exponential family with joint density or frequency
function satisfying

k
) =exp Z(’Z —d(0) + S(z)| I(x € A)

« Show that the statistic
T = (TW(X), -, Te(X))

is sufficient for 6.
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Minimal sufficient statistics

» There are two notions of what is meant by the "best possible”
reduction of the data.

» The first of these is minimal sufficiency; a sufficient statistic 7" is
minimal sufficient if for any other sufficient statistic S, there exists
a function g such that T = ¢(5).

» Thus a minimal sufficient statistic is the sufficient statistic that
represents the maximal reduction of the data that contains as
much information about the unknown parameter as the data
itself.
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Complete sufficient statistics

* A second (and stronger) notion is completeness. If X ~ Fy then
a statistic ' = T'(X) is complete if Ey(g(T)) =0forall 0 € ©
implies that Py(g(T) =0) =1forall § € ©.

¢ In particular, if T'is complete then ¢(T") is ancillary for 6 only if
g(T) is constant; thus a complete statistic T' contains no ancillary
information.
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