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In this lecture, we will cover
» Confidence Intervals;
* More on Convergence of Random Variables;

* and o, and O,, notations.
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Confidence Intervals



Confidence Intervals

» Suppose Xj, ..., X, are random variables with some joint
distribution depending on a parameter 6 that may be real- or
vector-valued.

« An example is the same average X = 1 3" | X; for estimating
the mean u, where X, ..., X, are i.i.d. random variables with
mean . and variance o2.

« It is often of interest to find interval estimators for 0 that are likely
to contain the true value of 0.
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Confidence Intervals

Definition (Confidence Intervals)
A p confidence interval for a parameter 6 is an interval
(L(Xq,...,X,),U(Xy,...,X,)) such that

Py(L(Xy,...,Xn) <0 <UXy,....,Xpn))=p
for all 6 in the parameter space.

The number p is called the confidence level of the interval or
coverage probability (or simply coverage).
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Lower and upper confidence bounds

» Similarly, we can define lower and upper confidence bounds.

 Suppose that
P> LX) =p

for some statistic L(X') and for all §; then L(X) is called a p
lower confidence bound for 6.

 Likewise, if
Pl0 <U(X)]=p

for some statistic U(X) and for all #; then U(X) is called a p
upper confidence bound for 6.
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Some misconceptions about confidence intervals

» The interpretation of confidence intervals is frequently
misunderstood.

* Much of the confusion stems from the fact that confidence
intervals are defined in terms of the distribution of
X = (Xy,...,X,) but, in practice, are stated in terms of the
observed values ofthese random variables leaving the
impression that a probability statement is being made about ¢
rather than about the random interval.

» However, given data X = «, the interval [L(x), U(x)] will either
contain the true value of 6 or not contain the true value of 6;
under repeated sampling, p ofthese intervals will contain the true
value of 6.
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Exact vs approximate confidence intervals

* An exact confidence interval is derived from the exact distribution
of the data.

* In many problems, it is difficult or impossible to find an exact
confidence interval.

* In such cases, we often resort to approximate confidence
intervals that are valid in large samples:

Py(L(X)<6<UX))=p.
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An example of exact and approxiamte confidence intervals

» Suppose that X1, ..., X, are i.i.d. Normal random variables with
mean p and variance 1. Then /n(X — ) ~ N(0,1) and so

P,[-1.96 < v/n(X — p) < 1.96] = 0.95,
which is the same as

P,[X —1.96/v/n < pu < X +1.96/+/n] = 0.95.

 If we assume only that X;,..., X, are i.i.d. with mean p and
variance 1 (not necessarily normally distributed), we have (by the
CLT),

P,[-1.96 < v/n(X — p) < 1.96] ~ 0.95,

if n is sufficiently large. Thus, using the same argument as
above, the interval with endpoints X + 1.96/,/n is an
approximate 95% confidence interval for p.
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More on Stochastic
Convergence



Definition (Convergence in Distribution)

Let X,, and X be random vectors. We say that X,, converges in distribution
to X, denoted X, 4 X, if

Fx, (z) = Fx(z)

for all points = at which Fx is continuous, where Fx,, and Fx are the
cumulative distribution functions of X, and X, respectively.

Definition (Convergence in Probability)

Let X, and X be random variables. We say that X,, converges in
probability to X, denoted X,, & X, if for every e > 0,

P(| X, — X|| > €) = 0.
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Definition (Convergence almost surely)
Let X,, and X be random vectors. We say that X,, converges
almost surely to X, denoted X,, 2% X, if

P(lim X, =X)=1.

n—r oo

The three notions of convergence correspond to central limit theroem,
weak law of large numbers, and strong law of large numbers,
respectively.

The strong law of large numbers appears to be of less interest in
statistics. Usually the weak law of large numbers, according to which
X =", X; 5 EX,, suffices.
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Portmanteau Lemma

Lemma (Portmanteau Lemma)

For any random vectors X,, and X the following statements are
equivalent.

N o o~ 0 Db~

P(X, <z)—> P(X
E[f(Xa)] = E[f
E[f(Xn)] = E[f
liminf E[f(Xn)]
liminf P(X,, € G) > P(X € G) for every open set G;

limsup P(X, € F) < P(X € F) for every closed set F';

P(X, € B) — P(X € B) for all Borel sets B with P(X € dB) = 0,
where B = B — B is the boundary of B.

< z) for all continuity points of x — P(X < z);
(X)] for all bounded, continuous functions f;
(X)] for all bounded, Lipschitz functions f;
>

E[f(X)] for all nonnegative, continuous functions f;
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Proof of Portmanteau Lemma

See Lemma 2.2 by van der Vaart (2000).
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Continuous Mapping Theorem

Theorem (Continuous Mapping Theorem)

Let g : R¥ — R™ be continuous at every point of a set C C R* such
thatP(X € C) = 1. Then:

1. I X, % X, then g(X,)) % g(X).
2. If X, B X, then g(X,) & g(X).
3. If X, % X, then g(X,) & g(X).
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Proof of Continuous Mapping Theorem

See Theorem 2.3 by van der Vaart (2000).
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Some results regarding the three notions of convergence

Theorem
Let X,,, X and,, be random vectors. Then

X, 3 X implies X, % X;

X, B X implies X,, % X;

X ¢ for a constant ¢ if and only if X, B¢

IFX, % X and || X, — Y, || &0, thenY, % X;

IfX, % X andY, & ¢ for a constant ¢, then (X,,,Y,,) % (X, ¢);
If X, % X andy, B Y, then (X,,Y,) 5 (X,Y).

o g kN =
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See Theorem 2.7 by van der Vaart (2000).

16/25



Slustky’s Lemma

Lemma (Slustky’s Lemma)

Let X,, andY,, be random vectors. If X,, 4 x and Y, & cfora
constant c, then

° X?L“'Yn,gX"'C;
« Y, X, % eX;
c YlX, S lX.
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See Lemma 2.8 by van der Vaart (2000).
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Example 1: t-statistics

Example

Let Y1, Y5, ... be independent, identically distributed random
variables with EY; = 0 and EY}? < co. Then the t-statistic \/nY,,/ S,
where S% = (n — 1)~ Y1 | (V; — Y,,)? is the sample variance, is
asymptotically standard normal.

To see this, first note that by two applications of the weak law of

large numbers and the continuous-mapping theorem for
convergence in probability

s2

— ( ZYQ Y2> 2, EY2 — (EY1)? = varY;.

Again by the continuous-mapping theorem, .S,, converges in

probability to sd Y;. By the central limit theorem /nY,, converges in

law to the N (0, varY;) distribution. Finally, Slutsky’s lemma gives

that the sequence of t-statistics converges in distribution to
N(0,varYy)/sdY; = N(0,1). O 19/25



Example 2: Confidence intervals

Example
Let 7, and S,, be sequences of estimators satisfying

Vn(T, — ) ~ N(0,6%), S, o2,

for certain parameters ¢ and % depending on the underlying
distribution, for every distribution in the model.

Then 0 = T,, + S,,/\/nz, is a confidence interval for 6 of asymptotic
level 1 — 2«.. More precisely, we have that the probability that 6 is
contained in T, — S,,/v/nza, T, + Sn/v/nza] cONverges to 1 — 2c.
This is a consequence of the fact that the sequence /n (T}, — 6)/S,
is asymptotically standard normally distributed. O
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Example 3: Applications of Weak Law of Large Numbers

Example

» Suppose that X3, --- , X, are i.i.d. random variables with a
distribution function F'(z). Assume that the X; ’s have a unique
median u(F(p) = 1/2); in particular, this implies that for any
€e>0,F(p+e)>1/2and F(u—e¢) < 1/2.

¢ Let X(y), -+, X(») be the order statistics of the X;’'s and define
Zy = X(m,) Where {m,, } is a sequence of positive integers with
my/n — 1/2 as n — co. For example, we could take m,, = n/2 if
n is even and m,, = (n + 1)/2 if n is odd; in this case, Z,, is
essentially the sample median of the X;’s.

» Show that Z,, —, pas n — oo.
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The o, and O, Notations




Bounded in probability

Definition (Tightness)
A random variable X is called tight if for every ¢ > 0 there exists a
constant M such that P(|| X|| > M) < e.

Definition (Bounded in probability)

A sequence of random vectors {X,, : n > 1} is called bounded in
probability or uniformly tight if A can be chosen the same for every
X,,: For every e > 0 there exists a constant M such that

sup P(|| X, || > M) < e.
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The o, and O, Notations

* The notation o,(1) ("small oh-P-one”) is short for a sequence of
random vectors that converges to zero in probability.

+ The notation O, (1) ("big oh-P-one”) is short for a sequence of
random vectors that is bounded in probability.

» More generally, for a given sequence of random variables R,,,

* R, = 0,(R,) means X,, = Y,,R,, and Y, 2 0;
* R, = Op(Rn) means X,, =Y, R, and Y, = Op(1).
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Rules for Calculation

There are many rules of calculus with o and O symbols, which we
apply without comment. For instance,

op(1) +op(1)
( )+OP(1)=0P( )
Op(1)op(1) = op(1)
(1+o0p(1))~" = 0p(1)
p(1

Op(Rn) = R,o0 )
OP(R'n,) = RﬂOP( )
op(Op(1)) = op(1).
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Two more rules

Lemma

Let R be a function defined on domain in R* such that R(0) = 0. Let
X,, be a sequence of random vectors with values in the domain of R
that converges in probability to zero. Then, for every p > 0,

1. if R(h) = o(||h||?) as i — 0, then R(X,,) = op (|| Xnll?);
2. if R(h) = O(||h||P) as h — 0, then R(X,,) = Op (|| Xa]l?).

See Lemma 2.12 by van der Vaart (2000).
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