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Outline

In this lecture, we will cover

• Confidence Intervals;

• More on Convergence of Random Variables;

• and op and Op notations.

2/25



Confidence Intervals



Confidence Intervals

• Suppose X1, . . . , Xn are random variables with some joint
distribution depending on a parameter θ that may be real- or
vector-valued.

• An example is the same average X̄ = 1
n

∑n
i=1 Xi for estimating

the mean µ, where X1, . . . , Xn are i.i.d. random variables with
mean µ and variance σ2.

• It is often of interest to find interval estimators for θ that are likely
to contain the true value of θ.
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Confidence Intervals

Definition (Confidence Intervals)
A p confidence interval for a parameter θ is an interval
(L(X1, . . . , Xn), U(X1, . . . , Xn)) such that

Pθ(L(X1, . . . , Xn) ≤ θ ≤ U(X1, . . . , Xn)) = p

for all θ in the parameter space.

The number p is called the confidence level of the interval or
coverage probability (or simply coverage).
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Lower and upper confidence bounds

• Similarly, we can define lower and upper confidence bounds.

• Suppose that
Pθ[θ ≥ L(X)] = p

for some statistic L(X) and for all θ; then L(X) is called a p

lower confidence bound for θ.

• Likewise, if
Pθ[θ ≤ U(X)] = p

for some statistic U(X) and for all θ; then U(X) is called a p

upper confidence bound for θ.
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Some misconceptions about confidence intervals

• The interpretation of confidence intervals is frequently
misunderstood.

• Much of the confusion stems from the fact that confidence
intervals are defined in terms of the distribution of
X = (X1, . . . , Xn) but, in practice, are stated in terms of the
observed values ofthese random variables leaving the
impression that a probability statement is being made about θ
rather than about the random interval.

• However, given data X = x, the interval [L(x), U(x)] will either
contain the true value of θ or not contain the true value of θ;
under repeated sampling, p ofthese intervals will contain the true
value of θ.
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Exact vs approximate confidence intervals

• An exact confidence interval is derived from the exact distribution
of the data.

• In many problems, it is difficult or impossible to find an exact
confidence interval.

• In such cases, we often resort to approximate confidence
intervals that are valid in large samples:

Pθ(L(X) ≤ θ ≤ U(X)) ≈ p.
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An example of exact and approxiamte confidence intervals

• Suppose that X1, . . . , Xn are i.i.d. Normal random variables with
mean µ and variance 1. Then

√
n(X̄ − µ) ∼ N(0, 1) and so

Pµ[−1.96 ≤
√
n(X̄ − µ) ≤ 1.96] = 0.95,

which is the same as

Pµ[X̄ − 1.96/
√
n ≤ µ ≤ X̄ + 1.96/

√
n] = 0.95.

• If we assume only that X1, . . . , Xn are i.i.d. with mean µ and
variance 1 (not necessarily normally distributed), we have (by the
CLT),

Pµ[−1.96 ≤
√
n(X̄ − µ) ≤ 1.96] ≈ 0.95,

if n is sufficiently large. Thus, using the same argument as
above, the interval with endpoints X̄ ± 1.96/

√
n is an

approximate 95% confidence interval for µ.
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More on Stochastic
Convergence



Definitions

Definition (Convergence in Distribution)
Let Xn and X be random vectors. We say that Xn converges in distribution
to X, denoted Xn

d→ X, if

FXn(x) → FX(x)

for all points x at which FX is continuous, where FXn and FX are the
cumulative distribution functions of Xn and X, respectively.

Definition (Convergence in Probability)
Let Xn and X be random variables. We say that Xn converges in
probability to X, denoted Xn

p→ X, if for every ϵ > 0,

P (∥Xn −X∥ > ϵ) → 0.
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Definitions

Definition (Convergence almost surely)
Let Xn and X be random vectors. We say that Xn converges
almost surely to X, denoted Xn

as→ X, if

P ( lim
n→∞

Xn = X) = 1.

The three notions of convergence correspond to central limit theroem,
weak law of large numbers, and strong law of large numbers,
respectively.

The strong law of large numbers appears to be of less interest in
statistics. Usually the weak law of large numbers, according to which
X̄ :=

∑n
i=1 Xi

p→ EX1, suffices.
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Portmanteau Lemma

Lemma (Portmanteau Lemma)
For any random vectors Xn and X the following statements are
equivalent.

1. P (Xn ≤ x) → P (X ≤ x) for all continuity points of x 7→ P (X ≤ x);

2. E[f(Xn)] → E[f(X)] for all bounded, continuous functions f ;

3. E[f(Xn)] → E[f(X)] for all bounded, Lipschitz functions f ;

4. lim inf E[f(Xn)] ≥ E[f(X)] for all nonnegative, continuous functions f ;

5. lim inf P (Xn ∈ G) ≥ P (X ∈ G) for every open set G;

6. lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for every closed set F ;

7. P (Xn ∈ B) → P (X ∈ B) for all Borel sets B with P (X ∈ ∂B) = 0,
where ∂B = B̄ − B̊ is the boundary of B.
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Proof of Portmanteau Lemma

See Lemma 2.2 by van der Vaart (2000).
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Continuous Mapping Theorem

Theorem (Continuous Mapping Theorem)

Let g : Rk → Rm be continuous at every point of a set C ⊆ Rk such
that P(X ∈ C) = 1. Then:

1. If Xn
d→ X, then g(Xn)

d→ g(X).

2. If Xn
p→ X, then g(Xn)

p→ g(X).

3. If Xn
as→ X, then g(Xn)

p→ g(X).
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Proof of Continuous Mapping Theorem

See Theorem 2.3 by van der Vaart (2000).
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Some results regarding the three notions of convergence

Theorem
Let Xn, X and Yn be random vectors. Then

1. Xn
as→ X implies Xn

p→ X;

2. Xn
p→ X implies Xn

d→ X;

3. Xn
d→ c for a constant c if and only if Xn

p→ c;

4. If Xn
d→ X and ∥Xn − Yn∥

p→ 0, then Yn
d→ X;

5. If Xn
d→ X and Yn

p→ c for a constant c, then (Xn, Yn)
d→ (X, c);

6. If Xn
p→ X and Yn

p→ Y , then (Xn, Yn)
p→ (X,Y ).
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Poof

See Theorem 2.7 by van der Vaart (2000).
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Slustky’s Lemma

Lemma (Slustky’s Lemma)

Let Xn and Yn be random vectors. If Xn
d→ X and Yn

p→ c for a
constant c, then

• Xn + Yn
d→ X + c;

• YnXn
d→ cX;

• Y −1
n Xn

d→ c−1X.
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Proof

See Lemma 2.8 by van der Vaart (2000).
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Example 1: t-statistics

Example
Let Y1, Y2, . . . be independent, identically distributed random
variables with EY1 = 0 and EY 2

1 < ∞. Then the t-statistic
√
nȲn/Sn,

where S2
n = (n− 1)−1

∑n
i=1(Yi − Ȳn)

2 is the sample variance, is
asymptotically standard normal.

To see this, first note that by two applications of the weak law of
large numbers and the continuous-mapping theorem for
convergence in probability

S2
n =

n

n− 1

(
1

n

n∑
i=1

Y 2
i − Ȳ 2

n

)
p−→ EY 2

1 − (EY1)
2 = varY1.

Again by the continuous-mapping theorem, Sn converges in
probability to sdY1. By the central limit theorem

√
nȲn converges in

law to the N(0, varY1) distribution. Finally, Slutsky’s lemma gives
that the sequence of t-statistics converges in distribution to
N(0, varY1)/sdY1 = N(0, 1). □ 19/25



Example 2: Confidence intervals

Example
Let Tn and Sn be sequences of estimators satisfying

√
n(Tn − θ)⇝ N(0, σ2), Sn

p−→ σ2,

for certain parameters θ and σ2 depending on the underlying
distribution, for every distribution in the model.

Then θ = Tn ± Sn/
√
nzα is a confidence interval for θ of asymptotic

level 1− 2α. More precisely, we have that the probability that θ is
contained in [Tn − Sn/

√
nzα, Tn + Sn/

√
nzα] converges to 1− 2α.

This is a consequence of the fact that the sequence
√
n(Tn − θ)/Sn

is asymptotically standard normally distributed. 2
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Example 3: Applications of Weak Law of Large Numbers

Example

• Suppose that X1, · · · , Xn are i.i.d. random variables with a
distribution function F (x). Assume that the Xi ’s have a unique
median µ(F (µ) = 1/2); in particular, this implies that for any
ϵ > 0, F (µ+ ϵ) > 1/2 and F (µ− ϵ) < 1/2.

• Let X(1), · · · , X(n) be the order statistics of the Xi’s and define
Zn = X(mn) where {mn} is a sequence of positive integers with
mn/n → 1/2 as n → ∞. For example, we could take mn = n/2 if
n is even and mn = (n+ 1)/2 if n is odd; in this case, Zn is
essentially the sample median of the Xi’s.

• Show that Zn →p µ as n → ∞.
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The op and Op Notations



Bounded in probability

Definition (Tightness)
A random variable X is called tight if for every ϵ > 0 there exists a
constant M such that P (∥X∥ > M) < ϵ.

Definition (Bounded in probability)
A sequence of random vectors {Xn : n ≥ 1} is called bounded in
probability or uniformly tight if M can be chosen the same for every
Xn: For every ϵ > 0 there exists a constant M such that
supP (∥Xn∥ > M) < ϵ.
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The op and Op Notations

• The notation op(1) (”small oh-P-one”) is short for a sequence of
random vectors that converges to zero in probability.

• The notation Op(1) (”big oh-P-one”) is short for a sequence of
random vectors that is bounded in probability.

• More generally, for a given sequence of random variables Rn,
• Rn = op(Rn) means Xn = YnRn and Yn

p−→ 0;
• Rn = Op(Rn) means Xn = YnRn and Yn = Op(1).
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Rules for Calculation

There are many rules of calculus with o and O symbols, which we
apply without comment. For instance,

oP (1) + oP (1) = oP (1)

oP (1) +OP (1) = OP (1)

OP (1)oP (1) = oP (1)

(1 + oP (1))
−1 = OP (1)

oP (Rn) = RnoP (1)

OP (Rn) = RnOP (1)

oP (OP (1)) = oP (1).
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Two more rules

Lemma

Let R be a function defined on domain in Rk such that R(0) = 0. Let
Xn be a sequence of random vectors with values in the domain of R
that converges in probability to zero. Then, for every p > 0,

1. if R(h) = o(∥h∥p) as h → 0, then R(Xn) = oP (∥Xn∥p);
2. if R(h) = O(∥h∥p) as h → 0, then R(Xn) = OP (∥Xn∥p).

See Lemma 2.12 by van der Vaart (2000).
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