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Convergence in probability

Definition
Let {Xn} , X be random variables. Then {Xn} converges in
probability to X as n → ∞ (Xn →p X) if for each ϵ > 0,

lim
n→∞

P (|Xn −X| > ϵ) = 0
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Convergence in distribution

Definition
Let {Xn} , X be random variables. Then {Xn} converges in
distribution to X as n → ∞ (Xn → dX) if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x) = F (x)

for each continuity point of the distribution function F (x).
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Proving convergence in distribution

• Recall that a sequence of random variables {Xn} converges in
distribution to a random variable X if the corresponding
sequence of distribution functions {Fn(x)} converges to F (x),
the distribution function of X, at each continuity point of F .

• It is often difficult to verify this condition directly for a number of
reasons. For example, it is often difficult to work with the
distribution functions {Fn}.

• Also, in many cases, the distribution function Fn may not be
specified exactly but may belong to a wider class; we may know,
for example, the mean and variance corresponding to Fn but little
else about Fn. (From a practical point of view, the cases where
Fn is not known exactly are most interesting; if Fn is known
exactly, there is really no reason to worry about a limiting
distribution F unless Fn is difficult to work with computationally.)
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Sheffe theorem

• Suppose that Xn has density function fn (for n ≥ 1 ) and X has
density function f . Then fn(x) → f(x) (for all but a countable
number of x ) implies that Xn →d X. Similarly, if Xn has
frequency function fn and X has frequency function f then
fn(x) → f(x) (for all x ) implies that Xn →d X. (This result is
known as Scheffé’s Theorem.)

• The converse of this result is not true; in fact, a sequence of
discrete random variables can converge in distribution to a
continuous variable and a sequence of continuous random
variables can converge in distribution to a discrete random
variable.
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Weak convergence of student distribution

• Suppose that {Xn} is a sequence of random variables where Xn

has Student’s t distribution with n degrees of freedom. The
density function of Xn is

fn(x) =
Γ((n+ 1)/2)√

πnΓ(n/2)

(
1 +

x2

n

)−(n+1)/2

• Stirling’s approximation, which may be stated as

lim
y→∞

√
yΓ(y)

√
2π exp(−y)yy

= 1

allows us to approximate Γ((n+ 1)/2) and Γ(n/2) for large n.

• We then get

lim
n→∞

Γ((n+ 1)/2)√
πnΓ(n/2)

=
1√
2π
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Weak convergence of student distribution

• Hence, we get

lim
n→∞

(
1 +

x2

n

)−(n+1)/2

= exp

(
−x2

2

)
and so

lim
n→∞

fn(x) =
1√
2π

exp

(
−x2

2

)
where the limit is a standard Normal density function.

• Thus Xn → dZ where Z has a standard Normal distribution.
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Convergence for Continuous function

Theorem
Let (Xn)

∞
n=1 be a sequence of random variables and X a random

variable. Xn →d X if and only if for any bounded continuous
function f ,

lim
n→∞

E(f(Xn)) = E(f(X)).

Rather than considering all bounded continuous functions, it suffices
to establish that limn→∞ E(f(Xn)) = E(f(X)) for any differentiable
function with a bounded derivative. More generally, this can be
extended to indefinitely differentiable functions with all derivatives
bounded.
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Proof I: Approximation of indicator function

• The key to the proof directly lies in approximating P [Xn ≤ x] by
E
[
f+
δ (Xn)

]
and E

[
f−
δ (Xn)

]
where f+

δ and f−
δ are two bounded,

continuous functions.

• In particular, we define f+
δ (y) = 1 for y ≤ x, f+

δ (y) = 0 for
y ≥ x+ δ and 0 ≤ f+

δ (y) ≤ 1 for x < y < x+ δ; we define
f−
δ (y) = f+

δ (y + δ). If

g(y) = I(y ≤ x)

it is easy to see that

f−
δ (y) ≤ g(y) ≤ f+

δ (y)
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Proof II : Key inequalities

• Since 1{y≤x} ≤ f+
δ (y), we get

P [Xn ≤ x] ≤ E
[
f+
δ (Xn)

]
≤ E

[
f+
δ (Xn)

]
− E

[
f+
δ (X)

]
+ E

[
f+
δ (X)

]
≤
∣∣E [f+

δ (Xn)
]
− E

[
f+
δ (X)

]∣∣+ P [X ≤ x+ δ]

• similarly, since 1{y≤x} ≤ f−
δ (y), we get

P [Xn ≤ x] ≥ P (X ≤ x− δ)−
∣∣E [f−

δ (Xn)
]
− E

[
f−
δ (X)

]∣∣
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Levy’s continuity theorem

Theorem
Let (Xn)

∞
n=1 be a sequence of random variables with corresponding

characteristic functions φn(t). Suppose that (φn(t))t≥0 converges
pointwise to some function (φ(t)) for all t ∈ R. Then, the following
statements are equivalent:

1. (Xn) converges in distribution to some random variable X.

2. (φ(t)) is the characteristic function of some random variable X.

3. φ(t) is continuous at t = 0.
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Central Limit theorems

Theorem (CLT for i.i.d. random variables)
Suppose that X1, X2, · · · are i.i.d. random variables with mean µ

and variance σ2 < ∞ and define

Sn =
1

σ
√
n

n∑
i=1

(Xi − µ) =

√
n
(
X̄n − µ

)
σ

Then Sn →d Z ∼ N(0, 1) as n → ∞.
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Approximation of the binomial distribution

• Suppose that X is a Binomial random variable with parameters n

and θ;X can be thought of as a sum of n i.i.d. Bernoulli random
variables so the distribution of X can be approximated by a
Normal distribution if n is sufficiently large.

• More specifically, the distribution of

X − nθ√
nθ(1− θ)

is approximately standard Normal for large n.
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Approximation of the binomial distribution

• We want to evaluate P [a ≤ X ≤ b] for some integers a and b.

• A naive application of the CLT gives

P [a ≤ X ≤ b]

= P

[
a− nθ√
nθ(1− θ)

≤ X − nθ√
nθ(1− θ)

≤ b− nθ√
nθ(1− θ)

]

≈ Φ

(
b− nθ√
nθ(1− θ)

)
− Φ

(
a− nθ√
nθ(1− θ)

)
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Normal approximation of the binomial distribution

Figure 1: Binomial distribution (n = 40, θ = 0.3) and approximating Normal
density
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Approximation of the binomial distribution

Figure 2: Left panel: Naive Normal approximation of P (8 ≤ X ≤ 17); Right
panel: Normal approximation of P (8 ≤ X ≤ 17) with continuity correction
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Continuity correction

• The distribution of X can be conveniently represented as a probability
histogram with the area of each bar representing the probability that X
takes a certain value.

• The naive Normal approximation given integrates the approximating
Normal density from a = 8 to b = 17; It seems that the naive Normal
approximation will underestimate the true probability.

• A better approximation may be obtained by integrating from
a− 0.5 = 7.5 to b+ 0.5 = 17.5. This corrected Normal approximation is

P [a ≤ X ≤ b] = P [a− 0.5 ≤ X ≤ b+ 0.5]

≈ Φ

(
b+ 0.5− nθ√

nθ(1− θ)

)
− Φ

(
a− 0.5− nθ√

nθ(1− θ)

)

• The correction used here is known as a continuity correction and can be
applied generally to improve the accuracy of the Normal approximation
for sums of discrete random variables.
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Variance Stabilizing transform for Bernoulli random vari-
ables

• Suppose that X1, · · · , Xn are i.i.d. Bernoulli random variables with
parameter θ. Then

√
n
(
X̄n − θ

)
→d Z ∼ N(0, θ(1− θ))

• Find g such that
√
n
(
g
(
X̄n

)
− g(θ)

)
→d N(0, 1).

• We solve the differential equation

g′(θ) =
1√

θ(1− θ)

• The general form of the solutions to this differential equation is

g(θ) = sin−1(2θ − 1) + c

where c is an arbitrary constant that could be taken to be 0. (The
solutions to the differential equation can also be written
g(θ) = 2 sin−1(

√
θ) + c.

)
.
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CLT for weighted sums

Theorem
Suppose that X1, X2, · · · are i.i.d. random variables with E (Xi) = 0

and Var (Xi) = 1 and let {ci} be a sequence of constants. Define

Sn =
1

sn

n∑
i=1

ciXi where s2n =

n∑
i=1

c2i

Then Sn → dZ, a standard Normal random variable, provided that

max
1≤i≤n

c2i
s2n

→ 0

as n → ∞.
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Lyapunov CLT

Theorem
Suppose that X1, X2, · · · are independent random variables with
E (Xi) = 0, E

(
X2

i

)
= σ2

i and E
(
|Xi|3

)
= γi and define

Sn =
1

sn

n∑
i=1

Xi

where s2n =
∑n

i=1 σ
2
i . If

lim
n→∞

1

s
3/2
n

n∑
i=1

γi = 0

then Sn →d Z, a standard Normal random variable.
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Cramér-Wold device

Theorem (Cramér-Wold device)
Suppose that {Xn} and X are random vectors. Then Xn →d X if,
and only if,

tTXn → dt
TX

for all vectors t.
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Multivariate CLT

Theorem
Suppose that X1,X2, X3, · · · are i.i.d. random vectors with mean
vector µ and variancecovariance matrix C and define

Sn =
1√
n

n∑
i=1

(Xi − µ) =
√
n
(
Xn − µ

)
.

Then Sn →d Z where Z has a multivariate Normal distribution with
mean 0 and variance-covariance matrix C.
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Convergence in probability of random vectors

Definition
We will say that Xn →p X if each coordinate of Xn converges in
probability to the corresponding coordinate of X. Equivalently, we
can say that Xn →p X if

lim
n→∞

P [∥Xn −X∥ > ϵ] = 0

where ∥ · ∥ is the Euclidean norm of a vector.
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