

SDS7102: Linear Models and Extensions

Central Limit Theorems

Qiang Sun, Ph.D. <qiang.sun@mbzuai.ac.ae>

These slides are due to Eric Moulines.

August 19, 2025

MBZUAI

Convergence in probability

Definition

Let $\{X_n\}, X$ be random variables. Then $\{X_n\}$ converges in probability to X as $n \rightarrow \infty$ ($X_n \rightarrow_p X$) if for each $\epsilon > 0$,

$$\lim_{n \rightarrow \infty} P(|X_n - X| > \epsilon) = 0$$

Convergence in distribution

Definition

Let $\{X_n\}$, X be random variables. Then $\{X_n\}$ converges in distribution to X as $n \rightarrow \infty$ ($X_n \rightarrow_d X$) if

$$\lim_{n \rightarrow \infty} P(X_n \leq x) = P(X \leq x) = F(x)$$

for each continuity point of the distribution function $F(x)$.

Proving convergence in distribution

- Recall that a sequence of random variables $\{X_n\}$ converges in distribution to a random variable X if the corresponding sequence of distribution functions $\{F_n(x)\}$ converges to $F(x)$, the distribution function of X , at each continuity point of F .
- It is often difficult to verify this condition directly for a number of reasons. For example, it is often difficult to work with the distribution functions $\{F_n\}$.
- Also, in many cases, the distribution function F_n may not be specified exactly but may belong to a wider class; we may know, for example, the mean and variance corresponding to F_n but little else about F_n . (From a practical point of view, the cases where F_n is not known exactly are most interesting; if F_n is known exactly, there is really no reason to worry about a limiting distribution F unless F_n is difficult to work with computationally.)

Sheffe theorem

- Suppose that X_n has density function f_n (for $n \geq 1$) and X has density function f . Then $f_n(x) \rightarrow f(x)$ (for all but a countable number of x) implies that $X_n \rightarrow_d X$. Similarly, if X_n has frequency function f_n and X has frequency function f then $f_n(x) \rightarrow f(x)$ (for all x) implies that $X_n \rightarrow_d X$. (This result is known as Scheffé's Theorem.)
- The converse of this result is not true; in fact, a sequence of discrete random variables can converge in distribution to a continuous variable and a sequence of continuous random variables can converge in distribution to a discrete random variable.

Weak convergence of student distribution

- Suppose that $\{X_n\}$ is a sequence of random variables where X_n has Student's t distribution with n degrees of freedom. The density function of X_n is

$$f_n(x) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

- Stirling's approximation, which may be stated as

$$\lim_{y \rightarrow \infty} \frac{\sqrt{y} \Gamma(y)}{\sqrt{2\pi} \exp(-y) y^y} = 1$$

allows us to approximate $\Gamma((n+1)/2)$ and $\Gamma(n/2)$ for large n .

- We then get

$$\lim_{n \rightarrow \infty} \frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(n/2)} = \frac{1}{\sqrt{2\pi}}$$

Weak convergence of student distribution

- Hence, we get

$$\lim_{n \rightarrow \infty} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} = \exp\left(-\frac{x^2}{2}\right)$$

and so

$$\lim_{n \rightarrow \infty} f_n(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

where the limit is a standard Normal density function.

- Thus $X_n \rightarrow_d Z$ where Z has a standard Normal distribution.

Convergence for Continuous function

Theorem

Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables and X a random variable. $X_n \rightarrow_d X$ if and only if for any bounded continuous function f ,

$$\lim_{n \rightarrow \infty} E(f(X_n)) = E(f(X)).$$

Rather than considering all bounded continuous functions, it suffices to establish that $\lim_{n \rightarrow \infty} E(f(X_n)) = E(f(X))$ for any differentiable function with a bounded derivative. More generally, this can be extended to indefinitely differentiable functions with all derivatives bounded.

Proof I: Approximation of indicator function

- The key to the proof directly lies in approximating $P[X_n \leq x]$ by $E[f_\delta^+(X_n)]$ and $E[f_\delta^-(X_n)]$ where f_δ^+ and f_δ^- are two bounded, continuous functions.
- In particular, we define $f_\delta^+(y) = 1$ for $y \leq x$, $f_\delta^+(y) = 0$ for $y \geq x + \delta$ and $0 \leq f_\delta^+(y) \leq 1$ for $x < y < x + \delta$; we define $f_\delta^-(y) = f_\delta^+(y + \delta)$. If

$$g(y) = I(y \leq x)$$

it is easy to see that

$$f_\delta^-(y) \leq g(y) \leq f_\delta^+(y)$$

Proof II : Key inequalities

- Since $1_{\{y \leq x\}} \leq f_\delta^+(y)$, we get

$$\begin{aligned} P[X_n \leq x] &\leq E[f_\delta^+(X_n)] \\ &\leq E[f_\delta^+(X_n)] - E[f_\delta^+(X)] + E[f_\delta^+(X)] \\ &\leq |E[f_\delta^+(X_n)] - E[f_\delta^+(X)]| + P[X \leq x + \delta] \end{aligned}$$

- similarly, since $1_{\{y \leq x\}} \leq f_\delta^-(y)$, we get

$$P[X_n \leq x] \geq P(X \leq x - \delta) - |E[f_\delta^-(X_n)] - E[f_\delta^-(X)]|$$

Levy's continuity theorem

Theorem

Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables with corresponding characteristic functions $\varphi_n(t)$. Suppose that $(\varphi_n(t))_{t \geq 0}$ converges pointwise to some function $(\varphi(t))$ for all $t \in \mathbb{R}$. Then, the following statements are equivalent:

1. (X_n) converges in distribution to some random variable X .
2. $(\varphi(t))$ is the characteristic function of some random variable X .
3. $\varphi(t)$ is continuous at $t = 0$.

Central Limit theorems

Theorem (CLT for i.i.d. random variables)

Suppose that X_1, X_2, \dots are i.i.d. random variables with mean μ and variance $\sigma^2 < \infty$ and define

$$S_n = \frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu) = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}$$

Then $S_n \rightarrow_d Z \sim N(0, 1)$ as $n \rightarrow \infty$.

Approximation of the binomial distribution

- Suppose that X is a Binomial random variable with parameters n and θ ; X can be thought of as a sum of n i.i.d. Bernoulli random variables so the distribution of X can be approximated by a Normal distribution if n is sufficiently large.
- More specifically, the distribution of

$$\frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}}$$

is approximately standard Normal for large n .

Approximation of the binomial distribution

- We want to evaluate $P[a \leq X \leq b]$ for some integers a and b .
- A naive application of the CLT gives

$$\begin{aligned} P[a \leq X \leq b] &= P\left[\frac{a - n\theta}{\sqrt{n\theta(1 - \theta)}} \leq \frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}} \leq \frac{b - n\theta}{\sqrt{n\theta(1 - \theta)}}\right] \\ &\approx \Phi\left(\frac{b - n\theta}{\sqrt{n\theta(1 - \theta)}}\right) - \Phi\left(\frac{a - n\theta}{\sqrt{n\theta(1 - \theta)}}\right) \end{aligned}$$

Normal approximation of the binomial distribution

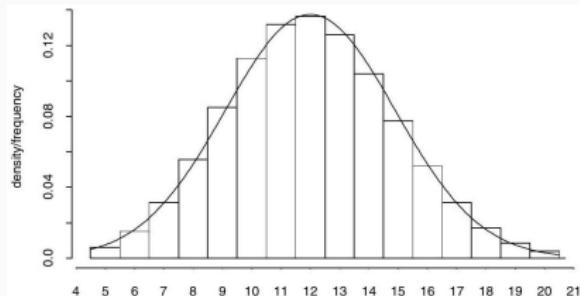


Figure 1: Binomial distribution ($n = 40, \theta = 0.3$) and approximating Normal density

Approximation of the binomial distribution

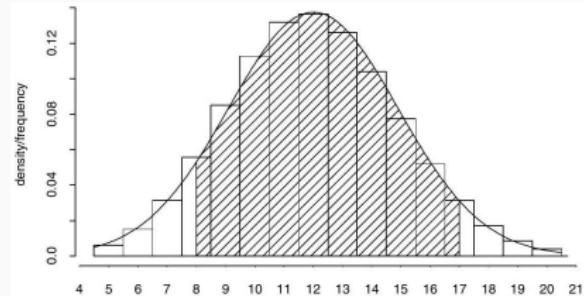
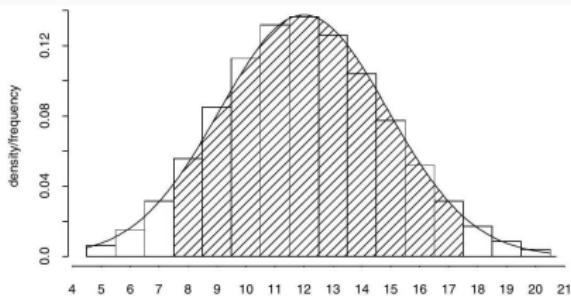


Figure 2: Left panel: Naive Normal approximation of $P(8 \leq X \leq 17)$; Right panel: Normal approximation of $P(8 \leq X \leq 17)$ with continuity correction

Continuity correction

- The distribution of X can be conveniently represented as a probability histogram with the area of each bar representing the probability that X takes a certain value.
- The naive Normal approximation given integrates the approximating Normal density from $a = 8$ to $b = 17$; It seems that the naive Normal approximation will underestimate the true probability.
- A better approximation may be obtained by integrating from $a - 0.5 = 7.5$ to $b + 0.5 = 17.5$. This corrected Normal approximation is

$$\begin{aligned} P[a \leq X \leq b] &= P[a - 0.5 \leq X \leq b + 0.5] \\ &\approx \Phi\left(\frac{b + 0.5 - n\theta}{\sqrt{n\theta(1 - \theta)}}\right) - \Phi\left(\frac{a - 0.5 - n\theta}{\sqrt{n\theta(1 - \theta)}}\right) \end{aligned}$$

- The correction used here is known as a continuity correction and can be applied generally to improve the accuracy of the Normal approximation for sums of discrete random variables.

Variance Stabilizing transform for Bernoulli random variables

- Suppose that X_1, \dots, X_n are i.i.d. Bernoulli random variables with parameter θ . Then

$$\sqrt{n} (\bar{X}_n - \theta) \xrightarrow{d} Z \sim N(0, \theta(1 - \theta))$$

- Find g such that $\sqrt{n} (g(\bar{X}_n) - g(\theta)) \xrightarrow{d} N(0, 1)$.
- We solve the differential equation

$$g'(\theta) = \frac{1}{\sqrt{\theta(1 - \theta)}}$$

- The general form of the solutions to this differential equation is

$$g(\theta) = \sin^{-1}(2\theta - 1) + c$$

where c is an arbitrary constant that could be taken to be 0. (The solutions to the differential equation can also be written $g(\theta) = 2 \sin^{-1}(\sqrt{\theta}) + c$.)

CLT for weighted sums

Theorem

Suppose that X_1, X_2, \dots are i.i.d. random variables with $E(X_i) = 0$ and $\text{Var}(X_i) = 1$ and let $\{c_i\}$ be a sequence of constants. Define

$$S_n = \frac{1}{s_n} \sum_{i=1}^n c_i X_i \quad \text{where} \quad s_n^2 = \sum_{i=1}^n c_i^2$$

Then $S_n \rightarrow_d Z$, a standard Normal random variable, provided that

$$\max_{1 \leq i \leq n} \frac{c_i^2}{s_n^2} \rightarrow 0$$

as $n \rightarrow \infty$.

Lyapunov CLT

Theorem

Suppose that X_1, X_2, \dots are independent random variables with $E(X_i) = 0$, $E(X_i^2) = \sigma_i^2$ and $E(|X_i|^3) = \gamma_i$ and define

$$S_n = \frac{1}{s_n} \sum_{i=1}^n X_i$$

where $s_n^2 = \sum_{i=1}^n \sigma_i^2$. If

$$\lim_{n \rightarrow \infty} \frac{1}{s_n^{3/2}} \sum_{i=1}^n \gamma_i = 0$$

then $S_n \rightarrow_d Z$, a standard Normal random variable.

Cramér-Wold device

Theorem (Cramér-Wold device)

Suppose that $\{X_n\}$ and X are random vectors. Then $X_n \rightarrow_d X$ if, and only if,

$$t^T X_n \rightarrow_d t^T X$$

for all vectors t .

Multivariate CLT

Theorem

Suppose that $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \dots$ are i.i.d. random vectors with mean vector μ and variance-covariance matrix C and define

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbf{X}_i - \mu) = \sqrt{n} (\bar{\mathbf{X}}_n - \mu).$$

Then $S_n \rightarrow_d Z$ where Z has a multivariate Normal distribution with mean $\mathbf{0}$ and variance-covariance matrix C .

Convergence in probability of random vectors

Definition

We will say that $\mathbf{X}_n \rightarrow_p \mathbf{X}$ if each coordinate of \mathbf{X}_n converges in probability to the corresponding coordinate of \mathbf{X} . Equivalently, we can say that $\mathbf{X}_n \rightarrow_p \mathbf{X}$ if

$$\lim_{n \rightarrow \infty} P [\|\mathbf{X}_n - \mathbf{X}\| > \epsilon] = 0$$

where $\|\cdot\|$ is the Euclidean norm of a vector.