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Introduction

• It is often necessary to consider the distribution of a random
variable that is itself a function of several random variables, for
example, Y = g (X1, · · · , Xn); a simple example is the sample
mean of random variables X1, · · · , Xn.

• Unfortunately, finding the distribution exactly is often very difficult
or very time-consuming even if the joint distribution of the
random variables is known exactly. In other cases, we may have
only partial information about the joint distribution of X1, · · · , Xn

in which case it is impossible to determine the distribution of Y .

• However, when n is large, it may be possible to obtain
approximations to the distribution of Y even when only partial
information about X1, · · · , Xn is available; in many cases, these
approximations can be remarkably accurate.
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Introduction

• Suppose that X1, · · · , Xn are i.i.d. random variables with mean µ

and variance σ2 and define

X̄n =
1

n

n∑
i=1

Xi

to be their sample mean; we would like to look at the behaviour
of the distribution of X̄n when n is large.

• First of all, it seems reasonable that X̄n will be close to µ if n is
sufficiently large; that is, the random variable X̄n − µ should have
a distribution that, for large n, is concentrated around 0 or, more
precisely,

P
[∣∣X̄n − µ

∣∣ ≤ ϵ
]
≈ 1,

when ϵ is small. (Note that Var
(
X̄n

)
= σ2/n → 0 as n → ∞.)
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Chebyshev’s inequality

Theorem

Suppose that X is a random variable with E
(
X2

)
< ∞. Then for

any ϵ > 0,

P [|X| > ϵ] ≤
E
(
X2

)
ϵ2

.
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Introduction

• It is also possible to look at the difference between X̄n and µ on
a ”magnified” scale; we do this by multiplying the difference
X̄n − µ by

√
n so that the mean and variance are constant.

• Thus define
Zn =

√
n
(
X̄n − µ

)
and note that E (Zn) = 0 and Var (Zn) = σ2.

• We can now consider the behaviour of the distribution function of
Zn as n increases. If this sequence of distribution functions has a
limit (in some sense) then we can use the limiting distribution
function to approximate the distribution function of Zn (and hence
of X̄n ).
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Introduction

For example, if we have

P (Zn ≤ x) = P
(√

n
(
X̄n − µ

)
≤ x

)
≈ F0(x)

then
P
(
X̄n ≤ y

)
= P

(√
n
(
X̄n − µ

)
≤

√
n(y − µ)

)
≈ F0(

√
n(y − µ))

provided that n is sufficiently large to make the approximation valid.
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Convergence in probability

Definition
Let {Xn} , X be random variables. Then {Xn} converges in
probability to X as n → ∞ (Xn →p X) if for each ϵ > 0,

lim
n→∞

P (|Xn −X| > ϵ) = 0.
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Convergence in distribution

Definition
Let {Xn} , X be random variables. Then {Xn} converges in
distribution to X as n → ∞ (Xn → dX) if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x) = F (x).

for each continuity point of the cumulative distribution function F .

Note that the number of discontinuity points of the function F is at
most countable.
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Convergence in distribution

• It is important to remember that Xn →d X implies convergence
of distribution functions and not of the random variables
themselves.

• For this reason, it is often convenient to replace Xn →d X by
Xn →d F where F is the distribution function of X, that is, the
limiting distribution; for example, Xn → dN

(
0, σ2

)
means that

{Xn} converges in distribution to a random variable that has a
Normal distribution (with mean 0 and variance σ2).
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Convergence in distribution

• If Xn →d X then for sufficiently large n we can approximate the
distribution function of Xn by that of X; thus, convergence in
distribution is potentially useful for approximating the distribution
function of a random variable.

• However, the statement Xn →d X does not say how large n must
be in order for the approximation to be practically useful. To
answer this question, we typically need a further result dealing
explicitly with the approximation error as a function of n.
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Maximum of uniform random variables

Suppose that X1, · · · , Xn are i.i.d. Uniform random variables on the
interval [0, 1] and define

Mn = max (X1, · · · , Xn)

• Show that Mn →p 1.

• Find the limiting distribution of n(1−Mn).
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Decimal representation

Suppose that X1, · · · , Xn are i.i.d. random variables with

P (Xi = j) =
1

10
for j = 0, 1, 2, · · · , 9

and define

Un =

n∑
k=1

Xk

10k

• Find the limiting distribution of Un.
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Links between convergence in probability and in distribution

Theorem
Let {Xn} , X be random variables.

1. If Xn →p X then Xn →d X.

2. If Xn →d θ (a constant) then Xn →p θ.
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Continuous Mapping Theorem

Theorem
Suppose that g(x) is a continuous real-valued function.

1. If Xn →p X then g (Xn) →p g(X).

2. If Xn →d X then g (Xn) →d g(X).

The assumption of continuity can also be relaxed somewhat. For
example, Theorem 3.2 will hold if g has a finite or countable number of
discontinuities provided that these discontinuity points are continuity
points of the distribution function of X. For example, if Xn →d θ (a
constant) and g(x) is continuous at x = θ then g (Xn) →d g(θ).
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Slutsky’s Theorem

Theorem
Suppose that Xn → dX and Yn →p θ (a constant). Then

1. Xn + Yn → dX + θ.

2. XnYn →d θX.
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Delta Method

Theorem
Suppose that

an (Xn − θ) →d Z

where θ is a constant and {an} is a sequence of constants with
an ↑ ∞. If g(x) is a function with derivative g′(θ) at x = θ then

an (g (Xn)− g(θ)) →d g′(θ)Z.
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Convergence of moments

• If Xn → dX (or Xn → pX ), it is tempting to say that E (Xn) →
E(X); however, this statement is not true in general.

• For example, suppose that P (Xn = 0) = 1− n−1 and
P (Xn = n) = n−1. Then Xn →p 0 but E (Xn) = 1 for all n (and
so converges to 1 ).

• To ensure convergence of moments, additional conditions are
needed; these conditions effectively bound the amount of
probability mass in the distribution of Xn concentrated near ±∞
for large n.
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Convergence of moments

Theorem
If Xn →d X and |Xn| ≤ M (finite) then E(X) exists and
E (Xn) → E(X).
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Weak Law of Large Numbers

Theorem
Suppose that X1, X2, · · · are i.i.d. random variables with E (Xi) = µ

where E (|Xi|) < ∞). Then

X̄n =
1

n

n∑
i=1

Xi →p µ

as n → ∞.
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Convergence of the sample median

• Suppose that X1, · · · , Xn are i.i.d. random variables with a
distribution function F (x). Assume that the Xi ’s have a unique
median µ(F (µ) = 1/2); in particular, this implies that for any
ϵ > 0, F (µ+ ϵ) > 1/2 and F (µ− ϵ) < 1/2.

• Let X(1), · · · , X(n) be the order statistics of the Xi’s and define
Zn = X(mn) where {mn} is a sequence of positive integers with
mn/n → 1/2 as n → ∞. For example, we could take mn = n/2 if
n is even and mn = (n+ 1)/2 if n is odd; in this case, Zn is
essentially the sample median of the Xi’s.

• Show that Zn →p µ as n → ∞.
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