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Scalar normal random variable

Definition
A random variable Y has the normal distribution with mean µ and
variance σ2, denoted Y ∼ N

(
µ, σ2

)
whose density is given by

f(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
We say that Y is standard normal if µ = 0 and σ = 1.

The moment generating function (mgf) for the standard normal is

mz(t) ≡ E
[
etZ
]
=

∫ ∞

−∞
etzf(z)dz =

∫ ∞

−∞
(2π)−

1
2 exp

{
tz − z2/2

}
dz

=

∫ ∞

−∞
(2π)−

1
2 exp

{
−(z − t)2/2 + t2/2

}
dz = exp

{
t2/2

}
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Standard multivariate distribution

Definition
Let Z be a p× 1 vector with each component Zi, i = 1, . . . , p

independently distributed with Zi ∼ N(0, 1). Then Z has the
standard multivariate normal distribution, denoted Z ∼ Np (0, Ip), in
p dimensions. The joint density of the standard multivariate normal
can be written then as

pZ(z) = (2π)−p/2 exp

{
−

p∑
i=1

z2i /2

}
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Moment generating function of a random vector

Definition
The moment generating function of a multivariate random variable
X is given by

mX(t) = E
{
et

TX
}

provided this expectation exists in a rectangle that includes the
origin. More precisely, there exists hi > 0, i = 1, . . . , p, so that the
expectation exists for all t such that −hi < ti < hi, i = 1, . . . , p
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Key property of MGF I

Theorem
If moment generating functions for two random vectors X1 and X2

exist, then the cdf’s for X1 and X2 are identical iff the MGF’s are
identical in an open rectangle that includes the origin.
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Key property of MGF II

Theorem
Assume the random vectors X1,X2, . . . ,Xp each have MGFs
mXj

(tj), j = 1, . . . , p, and that X =
(
XT

1 ,X
T
2 , . . . ,X

T
p

)T has MGF
mX(t), where t is partitioned similarly. Then X1,X2, . . . ,Xp are
mutually independent iff

mX(t) = mX1
(t1)×mX2

(t2)× . . .×mXp
(tp)

for all t in an open rectangle that includes the origin.
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MGF for a standard MVN distribution

The MGF for the standard multivariate normal distribution
Z ∼ Np (0, Ip) is:

mz(t) = E
{
exp

(
tTZ

)}
= E

{
exp

(
p∑

i=1

tiZi

)}
=

p∏
i=1

mzi (ti)

= exp

{
p∑

i=1

t2i /2

}
= exp

{
tT t/2

}
From this the moment generating function for X = µ+AZ can be
constructed:

mX(t) = E
[
et

TX
]
= E

[
et

Tµ+tTAZ
]
= et

Tµ×mz

(
AT t

)
= exp

{
tTµ+ tTAAT t/2

}
which is a function of just µ and AAT .
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MGF of a MVN distribution

• The moment generating function for X = µ+AZ can be
constructed:

mX(t) = E
[
et

TX
]
= E

[
et

Tµ+tTAZ
]

= et
Tµ ×mz

(
AT t

)
= exp

{
tTµ+ tTAAT t/2

}
which is a function of µ and AAT .

• We know that E[X] = µ and Cov(X) = AAT .

• The multivariate normal distribution is characterized by its mean
vector and covariance matrix.

8/31



Multivariate normal distribution

Definition
The p-dimensional vector X has the multivariate normal distribution
with mean µ and covariance matrix V, denoted by X ∼ Np(µ,V), if
and only if its moment generating function takes the form

mX(t) = exp
{
tTµ+ tTVt/2

}
• An important point to be emphasized here is that the covariance

matrix may be singular, leading to the singular multivariate
normal distribution.

• In this singular normal distribution, the probability mass lies in a
subspace, and the dimension of the subspace-the rank of the
covariance matrix - will be important
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How to sample an MVN(µ,V)

• for any nonnegative definite matrix V, we can find a matrix A

such that V = AAT .

• Hence, Y = µ+AZ where Z is standard MVN is MVV(µ,V).
The choice of the square root A does not matter.
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Multivariate normal distribution

Theorem
The p-dimensional vector X is multivariate normal if and only if for
any p-dimensional vector a, a⊤X is a scalar normal random
variable.
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Elementary properties 1

Theorem
If X ∼ Np(µ,V) and Y = a+BX where a is q × 1, and B is q × p,
then Y ∼ Nq

(
a+Bµ,BVBT

)
.

Corollary
If X is multivariate normal, then the joint distribution of any subset is
multivariate normal.
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Elementary properties 2

Theorem
If X ∼ Np(µ,V) and V is nonsingular, then

(a) there exists a nonsingular matrix A such that V = AAT ,

(b) A−1(X− µ) ∼ Np (0, Ip), and

(c) the pdf is (2π)−p/2|V|− 1
2 exp

{
− 1

2 (x− µ)TV−1(x− µ)
}

.
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Decorrelation and independence

Theorem
Let X ∼ Np(µ,V). Consider the following partition:

X =


X1

X2

...
Xm


p1
p2
...
pm

, µ =


µ1

µ2

...
µm


p1
p2
...
pm

, V =


V11 V12 . . . V1m

V21 V22 . . . V2m

...
...

...
Vm1 Vm2 . . . Vmm


p1
p2
...
pm

then X1,X2, . . . ,Xm are jointly independent iff Vij = 0 for all i ̸= j.
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Elementary property 3

Theorem
Let X ∼ Np(µ,V), and Y1 = a1 +B1X,Y2 = a2 +B2X, then Y1

and Y2 are independent iff B1VBT
2 = 0.
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Chi-square distribution

Definition

Let Z ∼ Np (0, Ip), then U = ZTZ =
∑p

i=1 Z
2
i has the chi-square

distribution with p degrees of freedom, denoted by U ∼ χ2
p.
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MGF of a chi-square distribution

The moment generating function for U can be computed directly from
the normal distribution as

mU (t) = E
[
etU
]
= E

[
exp

{
t

p∑
i=1

Z2
i

}]

=

p∏
i=1

∫ ∞

−∞
(2π)−

1
2 exp

{
tz2i − 1

2
z2i

}
dzi = (1− 2t)−

p
2

since∫ ∞

−∞
(2π)−

1
2 exp

{
tz2 − 1

2
z2
}
dz =

∫ ∞

−∞
(2π)−

1
2 exp

{
−1

2
(1− 2t)z2

}
dz = (1−2t)−

1
2 .
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Density of central chi-square distribution

The density for U ∼ χ2
p is given by

pU (u) =
u(p−2)/2e−u/2

Γ(p/2)2p/2

for u > 0, and zero otherwise. Obtaining the MGF from the density we
have

mU (t) =

∫ ∞

0

etupU (u)du =

∫ ∞

0

u(p−2)/2e−u( 1
2−t)

Γ(p/2)2p/2
du

=
Γ(p/2)

(
1
2 − t

)−p/2

Γ(p/2)2p/2
= (1− 2t)−p/2
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Non-central chi-square distribution

Definition

Let J ∼ Poisson(ϕ), and (U | J = j) ∼ χ2
p+2j , then unconditionally, U

has the noncentral chi-square distribution with noncentrality
parameter ϕ, denoted by U ∼ χ2

p(ϕ).

Using the characterization above, the density of the noncentral χ2

can be written as a Poisson-weighted mixture:

pU (u) =

∞∑
j=0

[
e−ϕϕj

j!

]
× u(p+2j−2)/2e−u/2

Γ
(
p+2j
2

)
2j+p/2

for u > 0 and zero otherwise.
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Property 1

Theorem

If U ∼ χ2
p(ϕ), then its MGF is

mU (t) = (1− 2t)−p/2 exp{2ϕt/(1− 2t)}.

Proof.
Taking the conditional route rather than directly using the density
and employing Result 5.8, we have

E
[
etU
]
= E

[
E
[
etU | J = j

]]
= E

[
(1− 2t)−(p+2J)/2

]
=

∞∑
j=0

(1− 2t)−(p+2j)/2ϕje−ϕ/j!

= (1− 2t)−p/2e−ϕ
∞∑
j=0

[ϕ/(1− 2t)]j/j!

= (1− 2t)−p/2e−ϕeϕ/(1−2t)
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Property 2

Theorem

If U1, U2, . . . , Um are jointly independent, and Ui ∼ χ2
pi
(ϕi), then

U =
∑m

i=1 Ui ∼ χ2
p(ϕ) where p =

∑m
i=1 pi and ϕ =

∑m
i=1 ϕi.

Proof.
Obtaining the MGF for U we have

mU (t) = E
[
et(

∑
Ui)
]
=

m∏
i=1

mUi
(t) =

m∏
i=1

[
(1− 2t)−pi/2 exp {2tϕi/(1− 2t)}

]
= (1− 2t)−p/2 exp{2tϕ/(1− 2t)}
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Property 3

Theorem

If U ∼ χ2
p(ϕ), then E(U) = p+ 2ϕ and Var(U) = 2p+ 8ϕ.
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Property 4

Theorem

If X ∼ N(µ, 1), then U = X2 ∼ χ2
1

(
µ2/2

)
.

Proof.
Finding the moment generating function for U , we have

mU (t) =E
[
etX

2
]
=

∫ ∞

−∞
(2π)−

1
2 exp

{
tx2 − (x− µ)2/2

}
dx

=

∫ ∞

−∞
(2π)−

1
2 exp

{
−1

2

[
x2 − 2xµ+ µ2 − 2tx2

]}
dx

=

∫ ∞

−∞
(2π)−

1
2 exp

{
−(1− 2t)(x− µ/(1− 2t))2/2

}
dx

× exp

{
−1

2

(
µ2 − µ2/(1− 2t)

}
=(1− 2t)−

1
2 × exp

{(
1

2
µ2

)
2t/(1− 2t)

}
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Theorem

If X ∼ Np (µ, Ip), then W = XTX =
∑p

i=1 X
2
i ∼ χ2

p

(
1
2µ

Tµ
)
.

Proof.

Since W =
∑p

i=1 Ui where Ui are independent (since Vij = 0 for
i ̸= j ), and Ui ∼ χ2

pi
(ϕi) where pi = 1, ϕi =

1
2µ

2
i , Property 2

provides the result, since
∑p

i=1 ϕi =
1
2µ

Tµ.
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Property IV

Theorem
Let X ∼ Np (µ, Ip) and A be symmetric; then if A is idempotent with
rank s, then XTAX ∼ χ2

s

(
ϕ = 1

2µ
TAµ

)
.

25/31



Property V

Theorem
Let X ∼ Np(µ,V) and A be symmetric with ranks; if BVA = 0, then
BX and XTAX are independent. Here B is q × p.

26/31



Mean and variance of Gaussian sample

Suppose that X1, · · · , Xn are i.i.d. Normal random variables with
mean µ and variance σ2 and define

X̄ =
1

n

n∑
i=1

Xi

and

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
X̄ and S2 are called the sample mean and sample variance
respectively. We know already that X̄ ∼ N

(
µ, σ2/n

)
. The following

results indicates that X̄ is independent of S2 and that the distribution
of S2 is related to a χ2 with n− 1 degrees of freedom.
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Gosset theorem

Proposition

(n− 1)S2/σ2 ∼ χ2(n− 1) and is independent of X̄ ∼ N
(
µ, σ2

)
.
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t-distribution

Definition

Let Z ∼ N(0, 1) and V ∼ χ2(n) be independent random variables.
Define T = Z/

√
V/n; the random variable T is said to have

Student’s t distribution with n degrees of freedom. (T ∼ T (n).)

29/31



p.d.f of a Student’s t-distribution

Suppose that Z ∼ N(0, 1) and V ∼ χ2(n) are independent random
variables, and define T = Z/

√
V/n.

• determine the density of T
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Student’s t-distribution

Suppose that X1, · · · , Xn are i.i.d. Normal random variables with
mean µ and variance σ2. Define the sample mean and variance of
the Xi ’s:

X̄ =
1

n

n∑
i=1

Xi

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
Now define T =

√
n(X̄ − µ)/S;

• Show that T ∼ T (n− 1)
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