SDS7102: Linear Models and Extensions

Multivariate Normal Distributions

Qiang Sun, Ph.D. <qiang.sun@mbzuai.ac.ae>

These slides are prepared by Eric Moulines. August 19, 2025

MBZUAI

Scalar normal random variable

Definition

A random variable Y has the normal distribution with mean μ and variance σ^2 , denoted $Y \sim N\left(\mu,\sigma^2\right)$ whose density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We say that Y is standard normal if $\mu = 0$ and $\sigma = 1$.

The moment generating function (mgf) for the standard normal is

$$\begin{split} m_z(t) &\equiv E\left[e^{tZ}\right] = \int_{-\infty}^{\infty} e^{tz} f(z) dz = \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{tz - z^2/2\right\} dz \\ &= \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{-(z-t)^2/2 + t^2/2\right\} dz = \exp\left\{t^2/2\right\} \end{split}$$

Standard multivariate distribution

Definition

Let ${\bf Z}$ be a $p \times 1$ vector with each component $Z_i, i=1,\ldots,p$ independently distributed with $Z_i \sim N(0,1)$. Then ${\bf Z}$ has the standard multivariate normal distribution, denoted ${\bf Z} \sim N_p \, (0,{\bf I}_p)$, in p dimensions. The joint density of the standard multivariate normal can be written then as

$$p_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-p/2} \exp\left\{-\sum_{i=1}^{p} z_i^2/2\right\}$$

Moment generating function of a random vector

Definition

The moment generating function of a multivariate random variable \mathbf{X} is given by

$$m_{\mathbf{X}}(\mathbf{t}) = E\left\{e^{\mathbf{t}^T\mathbf{X}}\right\}$$

provided this expectation exists in a rectangle that includes the origin. More precisely, there exists $h_i>0, i=1,\ldots,p$, so that the expectation exists for all t such that $-h_i< t_i< h_i, i=1,\ldots,p$

Key property of MGF I

Theorem

If moment generating functions for two random vectors \mathbf{X}_1 and \mathbf{X}_2 exist, then the cdf's for \mathbf{X}_1 and \mathbf{X}_2 are identical iff the MGF's are identical in an open rectangle that includes the origin.

Key property of MGF II

Theorem

Assume the random vectors $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p$ each have MGFs $m_{\mathbf{X}_j}(\mathbf{t}_j)$, $j=1,\dots,p$, and that $\mathbf{X}=\left(\mathbf{X}_1^T,\mathbf{X}_2^T,\dots,\mathbf{X}_p^T\right)^T$ has MGF $m_{\mathbf{X}}(\mathbf{t})$, where \mathbf{t} is partitioned similarly. Then $\mathbf{X}_1,\mathbf{X}_2,\dots,\mathbf{X}_p$ are mutually independent iff

$$m_{\mathbf{X}}(\mathbf{t}) = m_{\mathbf{X}_1}(\mathbf{t}_1) \times m_{\mathbf{X}_2}(\mathbf{t}_2) \times \ldots \times m_{\mathbf{X}_p}(\mathbf{t}_p)$$

for all ${\bf t}$ in an open rectangle that includes the origin.

MGF for a standard MVN distribution

The MGF for the standard multivariate normal distribution $\mathbf{Z} \sim N_p\left(0, \mathbf{I}_p\right)$ is:

$$m_{\mathbf{z}}(\mathbf{t}) = E\left\{\exp\left(\mathbf{t}^{T}\mathbf{Z}\right)\right\} = E\left\{\exp\left(\sum_{i=1}^{p} t_{i} Z_{i}\right)\right\} = \prod_{i=1}^{p} m_{z_{i}}\left(t_{i}\right)$$
$$= \exp\left\{\sum_{i=1}^{p} t_{i}^{2} / 2\right\} = \exp\left\{\mathbf{t}^{T}\mathbf{t} / 2\right\}$$

From this the moment generating function for $\mathbf{X} = \mu + \mathbf{AZ}$ can be constructed:

$$m_{\mathbf{X}}(\mathbf{t}) = E\left[e^{\mathbf{t}^T\mathbf{X}}\right] = E\left[e^{\mathbf{t}^T\mu + \mathbf{t}^T\mathbf{A}\mathbf{Z}}\right] = e^{\mathbf{t}^T\mu} \times m_z\left(\mathbf{A}^T\mathbf{t}\right) = \exp\left\{\mathbf{t}^T\mu + \mathbf{t}^T\mathbf{A}\mathbf{A}^T\mathbf{C}\right\}$$

which is a function of just μ and $\mathbf{A}\mathbf{A}^T$.

MGF of a MVN distribution

• The moment generating function for $\mathbf{X} = \mu + \mathbf{A}\mathbf{Z}$ can be constructed:

$$\begin{split} m_{\mathbf{X}}(\mathbf{t}) &= E\left[e^{\mathbf{t}^T\mathbf{X}}\right] = E\left[e^{\mathbf{t}^T\mu + \mathbf{t}^T\mathbf{A}\mathbf{Z}}\right] \\ &= e^{\mathbf{t}^T\mu} \times m_z\left(\mathbf{A}^T\mathbf{t}\right) = \exp\left\{\mathbf{t}^T\mu + \mathbf{t}^T\mathbf{A}\mathbf{A}^T\mathbf{t}/2\right\} \end{split}$$

which is a function of μ and $\mathbf{A}\mathbf{A}^T$.

- We know that $E[\mathbf{X}] = \mu$ and $Cov(\mathbf{X}) = \mathbf{A}\mathbf{A}^T$.
- The multivariate normal distribution is characterized by its mean vector and covariance matrix.

Multivariate normal distribution

Definition

The p-dimensional vector \mathbf{X} has the multivariate normal distribution with mean μ and covariance matrix \mathbf{V} , denoted by $\mathbf{X} \sim N_p(\mu, \mathbf{V})$, if and only if its moment generating function takes the form

$$m_{\mathbf{X}}(\mathbf{t}) = \exp\left\{\mathbf{t}^T \mu + \mathbf{t}^T \mathbf{V} \mathbf{t} / 2\right\}$$

- An important point to be emphasized here is that the covariance matrix may be singular, leading to the singular multivariate normal distribution.
- In this singular normal distribution, the probability mass lies in a subspace, and the dimension of the subspace-the rank of the covariance matrix - will be important

How to sample an MVN(μ , V)

- for any nonnegative definite matrix V, we can find a matrix A such that $V = AA^T$.
- Hence, $\mathbf{Y} = \mu + \mathbf{AZ}$ where \mathbf{Z} is standard MVN is MVV(μ , \mathbf{V}). The choice of the square root \mathbf{A} does not matter.

Multivariate normal distribution

Theorem

The p-dimensional vector \mathbf{X} is multivariate normal if and only if for any p-dimensional vector \mathbf{a} , $\mathbf{a}^{\top}\mathbf{X}$ is a scalar normal random variable.

Elementary properties 1

Theorem

If $\mathbf{X} \sim N_p(\mu, \mathbf{V})$ and $\mathbf{Y} = \mathbf{a} + \mathbf{B}\mathbf{X}$ where \mathbf{a} is $q \times 1$, and \mathbf{B} is $q \times p$, then $\mathbf{Y} \sim N_q \left(\mathbf{a} + \mathbf{B}\mu, \mathbf{B}\mathbf{V}\mathbf{B}^T \right)$.

Corollary

If ${\bf X}$ is multivariate normal, then the joint distribution of any subset is multivariate normal.

Elementary properties 2

Theorem

If $\mathbf{X} \sim N_p(\mu, \mathbf{V})$ and \mathbf{V} is nonsingular, then

- (a) there exists a nonsingular matrix A such that $V = AA^T$,
- (b) $\mathbf{A}^{-1}(\mathbf{X} \mu) \sim N_p(\mathbf{0}, \mathbf{I}_p)$, and
- (c) the pdf is $(2\pi)^{-p/2} |\mathbf{V}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} \mu)^T \mathbf{V}^{-1}(\mathbf{x} \mu)\right\}$.

Decorrelation and independence

Theorem

Let $X \sim N_p(\mu, V)$. Consider the following partition:

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_m \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{bmatrix} \cdot \mathbf{V} = \begin{bmatrix} \mathbf{V}_{11} & \mathbf{V}_{12} & \dots & \mathbf{V}_{1m} \\ \mathbf{V}_{21} & \mathbf{V}_{22} & \dots & \mathbf{V}_{2m} \\ \vdots & \vdots & & \vdots \\ \mathbf{V}_{m1} & \mathbf{V}_{m2} & \dots & \mathbf{V}_{mm} \end{bmatrix}$$

then $X_1, X_2, ..., X_m$ are jointly independent iff $V_{ij} = 0$ for all $i \neq j$.

Elementary property 3

Theorem

Let $X \sim N_p(\mu, V)$, and $Y_1 = a_1 + B_1 X$, $Y_2 = a_2 + B_2 X$, then Y_1 and Y_2 are independent iff $B_1 V B_2^T = 0$.

Chi-square distribution

Definition

Let $\mathbf{Z} \sim N_p\left(\mathbf{0}, \mathbf{I}_p\right)$, then $\mathbf{U} = \mathbf{Z}^T\mathbf{Z} = \sum_{i=1}^p \mathbf{Z}_i^2$ has the chi-square distribution with p degrees of freedom, denoted by $U \sim \chi_p^2$.

MGF of a chi-square distribution

The moment generating function for ${\cal U}$ can be computed directly from the normal distribution as

$$m_U(t) = E\left[e^{tU}\right] = E\left[\exp\left\{t\sum_{i=1}^p Z_i^2\right\}\right]$$
$$= \prod_{i=1}^p \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{tz_i^2 - \frac{1}{2}z_i^2\right\} dz_i = (1 - 2t)^{-\frac{p}{2}}$$

since

$$\int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{tz^2 - \frac{1}{2}z^2\right\} dz = \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(1 - 2t)z^2\right\} dz = (1 - 2t)z^2$$

Density of central chi-square distribution

The density for $U \sim \chi_p^2$ is given by

$$p_U(u) = \frac{u^{(p-2)/2}e^{-u/2}}{\Gamma(p/2)2^{p/2}}$$

for u>0, and zero otherwise. Obtaining the MGF from the density we have

$$m_U(t) = \int_0^\infty e^{tu} p_U(u) du = \int_0^\infty \frac{u^{(p-2)/2} e^{-u(\frac{1}{2} - t)}}{\Gamma(p/2) 2^{p/2}} du$$
$$= \frac{\Gamma(p/2) \left(\frac{1}{2} - t\right)^{-p/2}}{\Gamma(p/2) 2^{p/2}} = (1 - 2t)^{-p/2}$$

Non-central chi-square distribution

Definition

Let $J \sim \operatorname{Poisson}(\phi)$, and $(U \mid J = j) \sim \chi^2_{p+2j}$, then unconditionally, U has the noncentral chi-square distribution with noncentrality parameter ϕ , denoted by $U \sim \chi^2_p(\phi)$.

Using the characterization above, the density of the noncentral χ^2 can be written as a Poisson-weighted mixture:

$$p_U(u) = \sum_{j=0}^{\infty} \left[\frac{e^{-\phi} \phi^j}{j!} \right] \times \frac{u^{(p+2j-2)/2} e^{-u/2}}{\Gamma\left(\frac{p+2j}{2}\right) 2^{j+p/2}}$$

for u > 0 and zero otherwise.

Theorem

If
$$U \sim \chi_p^2(\phi)$$
, then its MGF is

$$m_U(t) = (1 - 2t)^{-p/2} \exp\{2\phi t/(1 - 2t)\}.$$

Theorem

If
$$U \sim \chi_p^2(\phi)$$
, then its MGF is $m_U(t) = (1-2t)^{-p/2} \exp\{2\phi t/(1-2t)\}$.

Proof.

Taking the conditional route rather than directly using the density and employing Result 5.8, we have

$$\begin{split} E\left[e^{tU}\right] &= E\left[E\left[e^{tU} \mid J=j\right]\right] = E\left[(1-2t)^{-(p+2J)/2}\right] \\ &= \sum_{j=0}^{\infty} (1-2t)^{-(p+2j)/2} \phi^{j} e^{-\phi}/j! \\ &= (1-2t)^{-p/2} e^{-\phi} \sum_{j=0}^{\infty} [\phi/(1-2t)]^{j}/j! \\ &= (1-2t)^{-p/2} e^{-\phi} e^{\phi/(1-2t)} \end{split}$$

Theorem

If U_1, U_2, \ldots, U_m are jointly independent, and $U_i \sim \chi^2_{p_i}(\phi_i)$, then $U = \sum_{i=1}^m U_i \sim \chi^2_p(\phi)$ where $p = \sum_{i=1}^m p_i$ and $\phi = \sum_{i=1}^m \phi_i$.

Theorem

If U_1, U_2, \ldots, U_m are jointly independent, and $U_i \sim \chi_{p_i}^2(\phi_i)$, then $U = \sum_{i=1}^m U_i \sim \chi_p^2(\phi)$ where $p = \sum_{i=1}^m p_i$ and $\phi = \sum_{i=1}^m \phi_i$.

Proof.

Obtaining the MGF for U we have

$$m_U(t) = E\left[e^{t(\sum U_i)}\right] = \prod_{i=1}^m m_{U_i}(t) = \prod_{i=1}^m \left[(1 - 2t)^{-p_i/2} \exp\left\{2t\phi_i/(1 - 2t)\right\} \right]$$
$$= (1 - 2t)^{-p/2} \exp\left\{2t\phi/(1 - 2t)\right\}$$

21/31

Theorem

If
$$U \sim \chi_p^2(\phi)$$
, then $E(U) = p + 2\phi$ and $Var(U) = 2p + 8\phi$.

Theorem

If
$$X \sim N(\mu, 1)$$
, then $U = X^2 \sim \chi_1^2 \left(\mu^2/2\right)$.

Theorem

If
$$X \sim N(\mu, 1)$$
, then $U = X^2 \sim \chi_1^2 \left(\mu^2/2\right)$.

Proof.

Finding the moment generating function for U, we have

$$m_U(t) = E\left[e^{tX^2}\right] = \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{tx^2 - (x-\mu)^2/2\right\} dx$$

$$= \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\left[x^2 - 2x\mu + \mu^2 - 2tx^2\right]\right\} dx$$

$$= \int_{-\infty}^{\infty} (2\pi)^{-\frac{1}{2}} \exp\left\{-(1-2t)(x-\mu/(1-2t))^2/2\right\} dx$$

$$\times \exp\left\{-\frac{1}{2}\left(\mu^2 - \mu^2/(1-2t)\right)\right\}$$

$$= (1-2t)^{-\frac{1}{2}} \times \exp\left\{\left(\frac{1}{2}\mu^2\right) 2t/(1-2t)\right\}$$

Theorem

If
$$\mathbf{X} \sim N_p(\mu, \mathbf{I}_p)$$
, then $W = \mathbf{X}^T \mathbf{X} = \sum_{i=1}^p X_i^2 \sim \chi_p^2 \left(\frac{1}{2} \mu^T \mu\right)$.

Proof.

Since $W=\sum_{i=1}^p U_i$ where U_i are independent (since $V_{ij}=0$ for $i\neq j$), and $U_i\sim \chi_{p_i}^2$ (ϕ_i) where $p_i=1, \phi_i=\frac{1}{2}\mu_i^2$, Property 2 provides the result, since $\sum_{i=1}^p \phi_i=\frac{1}{2}\mu^T\mu$.

Property IV

Theorem

Let $\mathbf{X} \sim N_p\left(\mu, \mathbf{I}_p\right)$ and \mathbf{A} be symmetric; then if \mathbf{A} is idempotent with rank s, then $\mathbf{X}^T \mathbf{A} \mathbf{X} \sim \chi_s^2 \left(\phi = \frac{1}{2} \mu^T \mathbf{A} \mu\right)$.

Property V

Theorem

Let $X \sim N_p(\mu, V)$ and A be symmetric with ranks; if BVA = 0, then BX and X^TAX are independent. Here B is $q \times p$.

Mean and variance of Gaussian sample

Suppose that X_1, \dots, X_n are i.i.d. Normal random variables with mean μ and variance σ^2 and define

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

 $ar{X}$ and S^2 are called the sample mean and sample variance respectively. We know already that $ar{X}\sim N\left(\mu,\sigma^2/n\right)$. The following results indicates that $ar{X}$ is independent of S^2 and that the distribution of S^2 is related to a χ^2 with n-1 degrees of freedom.

Gosset theorem

Proposition

$$(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$$
 and is independent of $\bar{X} \sim N\left(\mu,\sigma^2\right)$.

t-distribution

Definition

Let $Z \sim N(0,1)$ and $V \sim \chi^2(n)$ be independent random variables. Define $T = Z/\sqrt{V/n}$; the random variable T is said to have Student's t distribution with n degrees of freedom. $(T \sim \mathcal{T}(n).)$

p.d.f of a Student's t-distribution

Suppose that $Z \sim N(0,1)$ and $V \sim \chi^2(n)$ are independent random variables, and define $T = Z/\sqrt{V/n}$.

ullet determine the density of T

Student's t-distribution

Suppose that X_1, \dots, X_n are i.i.d. Normal random variables with mean μ and variance σ^2 . Define the sample mean and variance of the X_i 's:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Now define $T = \sqrt{n}(\bar{X} - \mu)/S$;

• Show that $T \sim \mathcal{T}(n-1)$