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Joint Distribution of a random vector

Definition

The joint distribution function of a random vector (X, -- , X%) is
F(x1, - ,28) = P(X1 < %1, , X < T1)

where the event [X; < x1,---, Xj < 24] is the intersection of the

events [X; < 1], , [Xp < .

Given the joint distribution function of random vector X, we can
determine P(X < A) for any (Borel) set A C R¥.
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Joint Frequency Function of a discrete random vector

Definition

Suppose that X3, --- , X are discrete random variables defined on
the same sample space. Then the joint frequency function of

X = (X1, -, X}y) is defined to be

f(x1, - ,z2x) =P (X1 =21, -+, Xi = i)
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Joint Density function of a random vector

Definition
Suppose that X3, --- , X,, are continuous random variables defined
on the same sample space and that

Tk X1
P[Xlgl‘l,"',ngmk]:/ / f(tlv"'atk)dtl"'dtk

forall zq,--- ,xx. Then f(xq,--- ,xy) is the joint density function of
(X1, , X%) (provided that f (z1,--- ,2x) >0).
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Marginal distributions

Theorem

(a) Suppose that X = (X4,---,Xy) has joint frequency function
f(x). Fort < k, the joint frequency function of (X, --- , Xy) is

g(x1, -, m) = Z f oz, )

(b) Suppose that X = (X,,---,X}) has joint density function f(x).
For ¢ < k, the joint density function of (X1, --- , Xy) is

g(z1,--,x / / fx1, - ox)dzeyy -+ dag
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Uniform distribution on a disk

Suppose that X and Y are continuous random variables with joint
density function

1
flay) =~ fora®+y* <1
™

X and Y thus have a Uniform distribution on a disk of radius 1
centered at the origin.

+ Determine P(X < u) for -1 < u < 1.
» Determine the probability density function (pdf) of X
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Independent random variables

Definition

Let X, -, X\ be random variables defined on the same sample
space. Xy, .-, Xy are said to be independent if the events

[a1 < X7 < b1],fae < Xo < bs], -+, [ar < X < bi] are independent
forall a; < b;,i=1,--- k.

An infinite collection X, X5, - of random variables are
independent if every finite collection of random variables is
independent.
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Joint density of independent random variables

Theorem
If Xy,---, Xy are independent and have joint density (or frequency)
function f (z1,--- , ) then

k

fl@, o m) =] fi (@)

=1
where f; (z;) is the marginal density (frequency) function of X.

Conversely, if the joint density (frequency) function is the product of
marginal density (frequency) functions then X, --- , Xy, are
independent.
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Minimum and Maximum of Uniform random variables

Suppose that X3, .-, X,, are i.i.d. continuous random variables with
common (marginal) density f(z) and distribution function F'(x). Given
Xq,---, X, we can define two new random variables

U=min (X, --,X,) and V =max (X, --,X,)

(a) Determine the marginal densities of U and V.
(b) Determine the joint density of (U, V)

9/39



Transformation

Suppose that X = (X,---, X}) is a random vector with some joint
distribution. Define new random variables Y; = h;(X)(i =1,--- , k)
where hq,--- , h; are real-valued functions. We would like to
determine

+ the (marginal) distribution of Y;, and
+ the joint distribution of Y = (Y7, --- , Y%).
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Change of Variables formulae

Objective: find the joint density of Y = (Y3, -+, Y%) where
Yi=h; (X1, ,Xp)(i=1,--- k)and X = (Xy,---,X}) has a joint

density fx.
We start by defining a vector-valued function h whose elements are
the functions hq, -, hy :
hl (xlv o Ik)
h2 (.1317 e 7$k§)
h(z) =
hi (1, -, Tk)
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« Assume ( that h is a one-to-one function with inverse h~! that is,
(R (h(x)) = ).

 Define the Jacobian matrix of h to be a k& x k whose i-th row and
j-th column element is

9

aIEj
with the Jacobian of h, J;, (x1,--- , x1), defined to be the
determinant of this matrix.

hi (x4, , k)
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Change-of-Variable

Theorem
Suppose that P(X € S) = 1 for some open set S C R*. If

(a) h has continuous partial derivatives on S,
(b) h is one-to-one on S,
() Jn(x)#A0forxe S

then (Y1,---,Y}) has joint density function
_ fx (b (w)

|Jh (R (y))]
= fx (b (W) |Jh—(v)|

Iy (y)

fory € h(S). (Jy,-1 is the Jacobian of h™!.)
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Sum of independent random variables

Suppose that X, X, are random variables with joint frequency
function fx (z1,z2) andlet Y = X; + Xo.

(a) Suppose that X, X, are discrete; Determine the joint frequency
function of Y.

(b) Suppose that X, X> are continuous with joint density fx (z1, z2).
Determine the density function of Y.
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Gamma distribution

Suppose that X3, X» are independent Gamma random variables with
common scale parameters:

X1 ~ Gamma(w, ) and X5 ~ Gamma(S, \)

Define
Yi=X1+X,
X1
Vo= —"1
27X+ Xy
Show that

(a) Y; is independent of Ys;

(b) Y1 has a Gamma distribution with shape parameter o + 5 and
scale parameter \;

(c) Y; has a Beta distribution with parameters « and
B (Y ~ Beta(a, 8)).
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The change-of-variable formula can be extended to the case where
the transformation h is not one-to-one. Suppose that P[X € S| =1
for some open set and that S is a disjoint union of open sets
Si,---,Sm where h is one-to-one on each of the S; ’s (with inverse
h;tonsS;).

The joint density of (Y7, -+ ,Y%) is
Z v)) [0 )| 1s, (07" @) -

where .J, 1 is the Jacobian of 2} !
J

16/39



Order statistics

Suppose that X, --- , X,, are i.i.d. random variables with density
function f(x). Reorder the X; ’s so that X ;) < Xo) < --- < X(p);
these latter random variables are called the order statistics of
le e aXn-

« Determine the distribution of order statistics.
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Expectation




Expectation

If X = (X4, -+, Xx) has a joint density or frequency function; more
precisely, we can define

EWX)] =) h(z)f(x)

if X has joint frequency function f(x) and

)= [ [ h@)f@idar - doy

if X has joint density function f(x).
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Expectation

Suppose that X3, --- , X,, are random variables defined on some
sample space and let Y = h (X4, --- , X}) for some real-valued
function k. The expected value of Y to be

[e’s) 0
B = [Py > yay— [P <yay

This formula implies that we need to first determine the distribution
function of Y in order to evaluate E(Y).
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Elementary properties of the expectation

Proposition
Suppose that X4, --- , X, are random variables with finite expected
values.

(a) If Xq,---, Xy are defined on the same sample space then

k
EXi++X) =) E(X))
=1

(b) If X4,---, Xy are independent random variables then

E<ﬁxz.) B
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Moment generating function of a sum of independent random

variables

Suppose that X, --- , X,, are independent random variables with
moment generating functions my(t), - - - , m,,(t), respectively. Define
S=X;+---+X,.

» Compute the MGF of S.

» Assume that X3, ..., X,, are Gaussian, F(X;) = u; and
Var(X;) = o2. What is the distribution of S
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Covariance

Definition

Suppose X and Y are random variables with £ (X?) and E (Y2)
both finite and let ux = E(X) and uy = E(Y). The covariance
between X and Y is

Cov(X,Y) = E[(X — pux) (Y — py)] = E(XY) — pxpy
1. For any constants a, b, ¢, and d,

Cov(aX +b,¢Y +d) = acCov(X,Y)

2. If X and Y are independent random variables (with E(X) and
E(Y) finite) then Cov(X,Y) =0

22/39



Independence and correlation

The converse to 2 is not true. In fact, it is simple to find an example
where Y = ¢g(X) but Cov(X,Y) = 0.

Suppose that X has a Uniform distribution on the interval [-1, 1] and
letY =—1if | X|<1/2andY =1if | X| > 1/2.

+ Show that Cov(X,Y) = 0.
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Elementary property

Proposition

Suppose that X1, - -+ , X,, are random variables with E (X?) < oo
for alli. Then

n n n j—1
Var (ZCL,X7> = ZCL72 Var (Xl)+QZJZGICLJ Cov (XZ,XJ)
p=ll o=l

j=2 i=1
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Sampling with replacement

Suppose we are sampling without replacement from a finite
population consisting of NV items a4, --- ,ay. Let X; denote the result
of the i-th draw; we then have

1

P(X;=ay) = NN -1)

1
N and P(Xi:ak,Xj:ag):

where 1 <1i,j,k, ¢ < N,i # j and k # £. Suppose we define

where n < N.

» Determine the mean and variance of S,, (Hint: you may use the
Var(Sy)) ?

« What happens if we sample with replacement ? 25/39



Covariance matrix

Given random variables X, - - , X,,, it is often convenient to
represent the variances and covariances of the X; 'sviaan xn
matrix.

Set X = (X;,---,X,)" (a column vector); then we define the
variance-covariance matrix (or covariance matrix) of X tobe ann xn
matrix C' = Cov(X) whose diagonal elements are

Cy; = Var (X;) (i = 1,--- ,n) and whose off-diagonal elements are
Cij = Cov (X;, X;) (i # )
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Covariance matrix

Variance-covariance matrices can be manipulated for linear
transformations of X: If Y = BX + a for some m x n matrix B and
vector a of length m then

Cov(Y) = B Cov(X)BT

Likewise, if we define the mean vector of X to be

E(X1)

then £(Y) = BE(X) + a.
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Correlation

Definition
Suppose that X and Y are random variables where both £ (X?)
and E (Y?) are finite. Then the correlation between X and Y is

Cov(X,Y)
[Var(X) Var(Y)]1/2

Corr(X,Y) =

The advantage of the correlation is the fact that it is essentially
invariant to linear transformations (unlike covariance). That is, if
U=aX+band V =cY +dthen

Corr(U, V) = Corr(X,Y)

if a and ¢ have the same sign; if a and ¢ have different signs then
Corr(U, V) = — Corr(X,Y).
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Property of the correlation

Proposition
Suppose that X andY are random variables where both E (X?)
and E (Y?) are finite. Then

(@) -1 < Corr(X,Y) <1;
(b) Corr(X,Y)=11if,andonly if, Y = aX + b forsome a > 0;
Corr(X,Y) = —1if,and only if, Y = aX + b for some a < 0.
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Optimal linear predictor

Proposition

Suppose that X and'Y are random variables where both E (X?)
and E (Y?) are finite and define

g(a,b) = E [(Y — a— bX)?]
Then g(a,b) is minimized at
_ Cov(X,Y)

bo = Var(X)
and ao=E(Y)—byE(X)

= Corr(X,Y) (Var(Y) ) v

Var(X)

with g (ao, bo) = Var(Y) (1 — Corr®(X,Y)).
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Conditional Distribution




Conditional distribution

We are often interested in the probability distribution of a random
variable (or random variables) given knowledge of some event A.

If the conditioning event A has positive probability then we can define
conditional distributions, conditional density functions (marginal and
joint) and conditional frequency functions using the definition of
conditional probability, for example,

P(Xl Swla"' 7Xk Sxk,A)
P(A)

P(XléxlavXkS‘/Lk|A):
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Conditional distribution

In the case of discrete random variables, it is straightforward to define

the conditional frequency function of (say) X1, --- , X, given the event
Xj+1 =Tjt1," " , Xk = x) as
f('rlv"' y Lj | Tjt1,: " 7xk>

:P(X1:$17"‘ an:Ij|Xj+1:xj+1a"' 7Xk::Ik)
P(Xi=x1,,X; =2, X411 =Tjp1, + , X = Tk)
P(Xj41 =541, , X = zx)

which is simply the joint frequency function of Xy, --- , X}, divided by
the joint frequency function of X;,,--- , X.
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Capture-recapture models

Mark/recapture experiments are used to estimate the size of animal
populations. Suppose that the size of the population is N (unknown).

« Initially, my members of the populations are captured and tagged
for future identification before being returned to the population.

» Subsequently, a similar process is repeated k times: m;
members are captured at stage ¢ and we define a random
variable X; to be the number of captured members who were
tagged previously; the m; — X; non-tagged members are tagged
and all m; members are returned to the population.

+ Derive the joint distribution of (X1, -, Xj).
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Conditional distribution

Definition

Suppose that (X, --- , X;) has the joint density function

g (z1,--- ,z1). Then the conditional density function of X;,--- , X;
given X, 11 = xj41,--- , X = @y IS defined to be

g(xla"' s Ljy Ljg1, ,Z‘k)
h(mj+1"" 7xk)

f(xlv"' 7Ij|xj+1"" 7xk):

provided that i (xj41,- - - , xx), the joint density of X1, -+, Xy, is
strictly positive.
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Conditional expected value

Definition
Given an event A with P(A) > 0 and a random variable X with
E[|X]] < oo, we define

0

E(X|A)/OOOP(X>x|A)dx/ P(X <z | A)dz

J —00

to be the conditional expected value of X given A.
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Law of total probability

Theorem

Suppose that Ay, As, - - - are disjoint events with P (Ay) > 0 for all k
and | Jy-, A = Q. Then if E[|X|] < oo,

= E(X | Ap) P (4)
=1l
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Conditional expectation

 Given a continuous random vector X, we would like to define
E(Y | X = «) for a random variable Y with E[|Y]] < oc.

+ Since the event [ X = «] has probability 0, this is somewhat
delicate from a technical point of view, although if Y has a
conditional density function given X = x, f(y | ) then we can
define

oo

E(Y|X =)= / yf(y | z)dy

» We can obtain similar expressions for E[¢(Y") | X = x] provided
that we can define the conditional distribution of Y given X = x
in a satisfactory way.
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Elementary property of conditional expectation

Proposition
Suppose that X andY are random vectors. Then

(@) ifE[|g1(Y)|] and E [|g2(Y)|] are finite,

Elagi(Y) +bg2(Y) | X = x]
=aB[(Y) | X =]+ bE [po(Y) | X =a
(b) Efg1(X)g2(Y) | X =] = g1(x)E [92(Y) | X = 2] if E[|g2(Y)]]
is finite;
(©) Ifh(z) = E[g(Y) | X = =] then E[h(X)] = Elg(Y)] if El|g(Y)]]
is finite.
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Variance decomposition

Theorem
Suppose thatY is a random variable with finite variance. Then

Var(Y) = E[Var(Y | X)] + Var[E(Y | X)]

where Var(Y | X) = E (Y — BE(Y | X))* | X].
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