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Joint Distribution of a random vector

Definition
The joint distribution function of a random vector (X1, · · · , Xk) is

F (x1, · · · , xk) = P (X1 ≤ x1, · · · , Xk ≤ xk)

where the event [X1 ≤ x1, · · · , Xk ≤ xk] is the intersection of the
events [X1 ≤ x1] , · · · , [Xk ≤ xk].
Given the joint distribution function of random vector X, we can
determine P (X ∈ A) for any (Borel) set A ⊂ Rk.
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Joint Frequency Function of a discrete random vector

Definition
Suppose that X1, · · · , Xk are discrete random variables defined on
the same sample space. Then the joint frequency function of
X = (X1, · · · , Xk) is defined to be

f (x1, · · · , xk) = P (X1 = x1, · · · , Xk = xk)
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Joint Density function of a random vector

Definition
Suppose that X1, · · · , Xn are continuous random variables defined
on the same sample space and that

P [X1 ≤ x1, · · · , Xk ≤ xk] =

∫ xk

−∞
· · ·
∫ x1

−∞
f (t1, · · · , tk) dt1 · · · dtk

for all x1, · · · , xk. Then f (x1, · · · , xk) is the joint density function of
(X1, · · · , Xk) (provided that f (x1, · · · , xk) ≥ 0 ).
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Marginal distributions

Theorem

(a) Suppose that X = (X1, · · · , Xk) has joint frequency function
f(x). For ℓ < k, the joint frequency function of (X1, · · · , Xℓ) is

g (x1, · · · , xℓ) =
∑

xℓ+1,··· ,xk

f (x1, · · · , xk)

(b) Suppose that X = (X1, · · · , Xk) has joint density function f(x).
For ℓ < k, the joint density function of (X1, · · · , Xℓ) is

g (x1, · · · , xℓ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1, · · · , xk) dxℓ+1 · · · dxk
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Uniform distribution on a disk

Suppose that X and Y are continuous random variables with joint
density function

f(x, y) =
1

π
for x2 + y2 ≤ 1

X and Y thus have a Uniform distribution on a disk of radius 1
centered at the origin.

• Determine P (X ≤ u) for −1 ≤ u ≤ 1.

• Determine the probability density function (pdf) of X
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Independent random variables

Definition
Let X1, · · · , Xk be random variables defined on the same sample
space. X1, · · · , Xk are said to be independent if the events
[a1 < X1 ≤ b1] , [a2 < X2 ≤ b2] , · · · , [ak < Xk ≤ bk] are independent
for all ai < bi, i = 1, · · · , k.

An infinite collection X1, X2, · · · of random variables are
independent if every finite collection of random variables is
independent.
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Joint density of independent random variables

Theorem
If X1, · · · , Xk are independent and have joint density (or frequency)
function f (x1, · · · , xk) then

f (x1, · · · , xk) =

k∏
i=1

fi (xi)

where fi (xi) is the marginal density (frequency) function of Xi.

Conversely, if the joint density (frequency) function is the product of
marginal density (frequency) functions then X1, · · · , Xk are
independent.
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Minimum and Maximum of Uniform random variables

Suppose that X1, · · · , Xn are i.i.d. continuous random variables with
common (marginal) density f(x) and distribution function F (x). Given
X1, · · · , Xn, we can define two new random variables

U = min (X1, · · · , Xn) and V = max (X1, · · · , Xn)

(a) Determine the marginal densities of U and V .

(b) Determine the joint density of (U, V )
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Transformation

Suppose that X = (X1, · · · , Xk) is a random vector with some joint
distribution. Define new random variables Yi = hi(X)(i = 1, · · · , k)
where h1, · · · , hk are real-valued functions. We would like to
determine

• the (marginal) distribution of Yi, and

• the joint distribution of Y = (Y1, · · · , Yk).
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Change of Variables formulae

Objective: find the joint density of Y = (Y1, · · · , Yk) where
Yi = hi (X1, · · · , Xk) (i = 1, · · · , k) and X = (X1, · · · , Xk) has a joint
density fX .

We start by defining a vector-valued function h whose elements are
the functions h1, · · · , hk :

h(x) =


h1 (x1, · · · , xk)

h2 (x1, · · · , xk)
...

hk (x1, · · · , xk)


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Jacobian

• Assume ( that h is a one-to-one function with inverse h−1 that is,(
h−1(h(x)) = x

)
.

• Define the Jacobian matrix of h to be a k × k whose i-th row and
j-th column element is

∂

∂xj
hi (x1, · · · , xk)

with the Jacobian of h, Jh (x1, · · · , xk), defined to be the
determinant of this matrix.
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Change-of-Variable

Theorem

Suppose that P (X ∈ S) = 1 for some open set S ⊂ Rk. If

(a) h has continuous partial derivatives on S,

(b) h is one-to-one on S,

(c) Jh(x) ̸= 0 for x ∈ S

then (Y1, · · · , Yk) has joint density function

fY (y) =
fX
(
h−1(y)

)
|Jh (h−1(y))|

= fX
(
h−1(y)

)
|Jh−1(y)|

for y ∈ h(S). (Jh−1 is the Jacobian of h−1.
)
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Sum of independent random variables

Suppose that X1, X2 are random variables with joint frequency
function fX (x1, x2) and let Y = X1 +X2.

(a) Suppose that X1, X2 are discrete; Determine the joint frequency
function of Y .

(b) Suppose that X1, X2 are continuous with joint density fX(x1, x2).
Determine the density function of Y .
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Gamma distribution

Suppose that X1, X2 are independent Gamma random variables with
common scale parameters:

X1 ∼ Gamma(α, λ) and X2 ∼ Gamma(β, λ)

Define

Y1 = X1 +X2

Y2 =
X1

X1 +X2

Show that

(a) Y1 is independent of Y2;
(b) Y1 has a Gamma distribution with shape parameter α+ β and

scale parameter λ;
(c) Y2 has a Beta distribution with parameters α and

β (Y2 ∼ Beta(α, β)).
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Extensions

The change-of-variable formula can be extended to the case where
the transformation h is not one-to-one. Suppose that P [X ∈ S] = 1

for some open set and that S is a disjoint union of open sets
S1, · · · , Sm where h is one-to-one on each of the Sj ’s (with inverse
h−1
j on Sj ).

The joint density of (Y1, · · · , Yk) is

fY (y) =

m∑
j=1

fX
(
h−1
j (y)

) ∣∣∣Jh−1
j
(y)
∣∣∣1Sj

(
h−1
j (y))

)
.

where Jh−1
j

is the Jacobian of h−1
j .
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Order statistics

Suppose that X1, · · · , Xn are i.i.d. random variables with density
function f(x). Reorder the Xi ’s so that X(1) < X(2) < · · · < X(n);
these latter random variables are called the order statistics of
X1, · · · , Xn.

• Determine the distribution of order statistics.
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Expectation

If X = (X1, · · · , Xk) has a joint density or frequency function; more
precisely, we can define

E[h(X)] =
∑
x

h(x)f(x)

if X has joint frequency function f(x) and

E[h(X)] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(x)f(x)dx1 · · · dxk

if X has joint density function f(x).
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Expectation

Suppose that X1, · · · , Xn are random variables defined on some
sample space and let Y = h (X1, · · · , Xk) for some real-valued
function h. The expected value of Y to be

E(Y ) =

∫ ∞

0

P (Y > y)dy −
∫ 0

−∞
P (Y ≤ y)dy

This formula implies that we need to first determine the distribution
function of Y in order to evaluate E(Y ).
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Elementary properties of the expectation

Proposition
Suppose that X1, · · · , Xk are random variables with finite expected
values.

(a) If X1, · · · , Xk are defined on the same sample space then

E (X1 + · · ·+Xk) =

k∑
i=1

E (Xi)

(b) If X1, · · · , Xk are independent random variables then

E

(
k∏

i=1

Xi

)
=

k∏
i=1

E (Xi)
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Moment generating function of a sum of independent random
variables

Suppose that X1, · · · , Xn are independent random variables with
moment generating functions m1(t), · · · ,mn(t), respectively. Define
S = X1 + · · ·+Xn.

• Compute the MGF of S.

• Assume that X1, . . . , Xn are Gaussian, E(Xi) = µi and
Var(Xi) = σ2

i . What is the distribution of S
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Covariance

Definition

Suppose X and Y are random variables with E
(
X2
)

and E
(
Y 2
)

both finite and let µX = E(X) and µY = E(Y ). The covariance
between X and Y is

Cov(X,Y ) = E [(X − µX) (Y − µY )] = E(XY )− µXµY

1. For any constants a, b, c, and d,

Cov(aX + b, cY + d) = acCov(X,Y )

2. If X and Y are independent random variables (with E(X) and
E(Y ) finite) then Cov(X,Y ) = 0

22/39



Independence and correlation

The converse to 2 is not true. In fact, it is simple to find an example
where Y = g(X) but Cov(X,Y ) = 0.

Suppose that X has a Uniform distribution on the interval [−1, 1] and
let Y = −1 if |X| < 1/2 and Y = 1 if |X| ≥ 1/2.

• Show that Cov(X,Y ) = 0.
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Elementary property

Proposition

Suppose that X1, · · · , Xn are random variables with E
(
X2

i

)
< ∞

for all i. Then

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2i Var (Xi) + 2

n∑
j=2

j−1∑
i=1

aiaj Cov (Xi, Xj)
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Sampling with replacement

Suppose we are sampling without replacement from a finite
population consisting of N items a1, · · · , aN . Let Xi denote the result
of the i-th draw; we then have

P (Xi = ak) =
1

N
and P (Xi = ak, Xj = aℓ) =

1

N(N − 1)

where 1 ≤ i, j, k, ℓ ≤ N, i ̸= j and k ̸= ℓ. Suppose we define

Sn =

n∑
i=1

Xi

where n ≤ N .

• Determine the mean and variance of Sn (Hint: you may use the
Var(SN )) ?
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Covariance matrix

Given random variables X1, · · · , Xn, it is often convenient to
represent the variances and covariances of the Xi ’s via a n× n

matrix.

Set X = (X1, · · · , Xn)
T (a column vector); then we define the

variance-covariance matrix (or covariance matrix) of X to be an n× n

matrix C = Cov(X) whose diagonal elements are
Cii = Var (Xi) (i = 1, · · · , n) and whose off-diagonal elements are
Cij = Cov (Xi, Xj) (i ̸= j).
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Covariance matrix

Variance-covariance matrices can be manipulated for linear
transformations of X: If Y = BX + a for some m× n matrix B and
vector a of length m then

Cov(Y ) = B Cov(X)BT

Likewise, if we define the mean vector of X to be

E(X) =


E (X1)

...
E (Xn)


then E(Y ) = BE(X) + a.
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Correlation

Definition

Suppose that X and Y are random variables where both E
(
X2
)

and E
(
Y 2
)

are finite. Then the correlation between X and Y is

Corr(X,Y ) =
Cov(X,Y )

[Var(X)Var(Y )]1/2

The advantage of the correlation is the fact that it is essentially
invariant to linear transformations (unlike covariance). That is, if
U = aX + b and V = cY + d then

Corr(U, V ) = Corr(X,Y )

if a and c have the same sign; if a and c have different signs then
Corr(U, V ) = −Corr(X,Y ).
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Property of the correlation

Proposition

Suppose that X and Y are random variables where both E
(
X2
)

and E
(
Y 2
)

are finite. Then

(a) −1 ≤ Corr(X,Y ) ≤ 1;

(b) Corr(X,Y ) = 1 if, and only if, Y = aX + b for some a > 0;
Corr(X,Y ) = −1 if, and only if, Y = aX + b for some a < 0.
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Optimal linear predictor

Proposition

Suppose that X and Y are random variables where both E
(
X2
)

and E
(
Y 2
)

are finite and define

g(a, b) = E
[
(Y − a− bX)2

]
Then g(a, b) is minimized at

b0 =
Cov(X,Y )

Var(X)
= Corr(X,Y )

(
Var(Y )

Var(X)

)1/2

and a0 = E(Y )− b0E(X)

with g (a0, b0) = Var(Y )
(
1− Corr2(X,Y )

)
.
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Conditional Distribution



Conditional distribution

We are often interested in the probability distribution of a random
variable (or random variables) given knowledge of some event A.

If the conditioning event A has positive probability then we can define
conditional distributions, conditional density functions (marginal and
joint) and conditional frequency functions using the definition of
conditional probability, for example,

P (X1 ≤ x1, · · · , Xk ≤ xk | A) =
P (X1 ≤ x1, · · · , Xk ≤ xk, A)

P (A)
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Conditional distribution

In the case of discrete random variables, it is straightforward to define
the conditional frequency function of (say) X1, · · · , Xj given the event
Xj+1 = xj+1, · · · , Xk = xk as

f (x1, · · · , xj | xj+1, · · · , xk)

= P (X1 = x1, · · · , Xj = xj | Xj+1 = xj+1, · · · , Xk = xk)

=
P (X1 = x1, · · · , Xj = xj , Xj+1 = xj+1, · · · , Xk = xk)

P (Xj+1 = xj+1, · · · , Xk = xk)

which is simply the joint frequency function of X1, · · · , Xk divided by
the joint frequency function of Xj+1, · · · , Xk.
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Capture-recapture models

Mark/recapture experiments are used to estimate the size of animal
populations. Suppose that the size of the population is N (unknown).

• Initially, m0 members of the populations are captured and tagged
for future identification before being returned to the population.

• Subsequently, a similar process is repeated k times: mi

members are captured at stage i and we define a random
variable Xi to be the number of captured members who were
tagged previously; the mi −Xi non-tagged members are tagged
and all mi members are returned to the population.

• Derive the joint distribution of (X1, · · · , Xk).
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Conditional distribution

Definition
Suppose that (X1, · · · , Xk) has the joint density function
g (x1, · · · , xk). Then the conditional density function of X1, · · · , Xj

given Xj+1 = xj+1, · · · , Xk = xk is defined to be

f (x1, · · · , xj | xj+1, · · · , xk) =
g (x1, · · · , xj , xj+1, · · · , xk)

h (xj+1, · · · , xk)

provided that h (xj+1, · · · , xk), the joint density of Xj+1, · · · , Xk, is
strictly positive.
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Conditional expected value

Definition
Given an event A with P (A) > 0 and a random variable X with
E[|X|] < ∞, we define

E(X | A) =
∫ ∞

0

P (X > x | A)dx−
∫ 0

−∞
P (X < x | A)dx

to be the conditional expected value of X given A.
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Law of total probability

Theorem
Suppose that A1, A2, · · · are disjoint events with P (Ak) > 0 for all k
and

⋃∞
k=1 Ak = Ω. Then if E[|X|] < ∞,

E(X) =

∞∑
k=1

E (X | Ak)P (Ak)
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Conditional expectation

• Given a continuous random vector X, we would like to define
E(Y | X = x) for a random variable Y with E[|Y |] < ∞.

• Since the event [X = x] has probability 0 , this is somewhat
delicate from a technical point of view, although if Y has a
conditional density function given X = x, f(y | x) then we can
define

E(Y | X = x) =

∫ ∞

−∞
yf(y | x)dy

• We can obtain similar expressions for E[g(Y ) | X = x] provided
that we can define the conditional distribution of Y given X = x

in a satisfactory way.
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Elementary property of conditional expectation

Proposition
Suppose that X and Y are random vectors. Then

(a) if E [|g1(Y )|] and E [|g2(Y )|] are finite,

E [ag1(Y ) + bg2(Y ) | X = x]

= aE [g1(Y ) | X = x] + bE [g2(Y ) | X = x]

(b) E [g1(X)g2(Y ) | X = x] = g1(x)E [g2(Y ) | X = x] if E [|g2(Y )|]
is finite;

(c) If h(x) = E[g(Y ) | X = x] then E[h(X)] = E[g(Y )] if E[|g(Y )|]
is finite.
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Variance decomposition

Theorem
Suppose that Y is a random variable with finite variance. Then

Var(Y ) = E[Var(Y | X)] + Var[E(Y | X)]

where Var(Y | X) = E
[
(Y − E(Y | X))2 | X

]
.
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