## **SDS7102: Linear Models and Extensions**

#### Random Variables

Qiang Sun, Ph.D. <qiang.sun@mbzuai.ac.ae>

These slides are prepared by Eric Moulines. August 22, 2025

MBZUAI

### Joint Distribution of a random vector

#### **Definition**

The joint distribution function of a random vector  $(X_1, \cdots, X_k)$  is

$$F(x_1, \dots, x_k) = P(X_1 \le x_1, \dots, X_k \le x_k)$$

where the event  $[X_1 \le x_1, \dots, X_k \le x_k]$  is the intersection of the events  $[X_1 \le x_1], \dots, [X_k \le x_k]$ .

Given the joint distribution function of random vector X, we can determine  $P(X \in A)$  for any (Borel) set  $A \subset \mathbb{R}^k$ .

## Joint Frequency Function of a discrete random vector

#### **Definition**

Suppose that  $X_1, \cdots, X_k$  are discrete random variables defined on the same sample space. Then the joint frequency function of  $X=(X_1,\cdots,X_k)$  is defined to be

$$f(x_1, \dots, x_k) = P(X_1 = x_1, \dots, X_k = x_k)$$

## Joint Density function of a random vector

#### **Definition**

Suppose that  $X_1, \dots, X_n$  are continuous random variables defined on the same sample space and that

$$P\left[X_{1} \leq x_{1}, \cdots, X_{k} \leq x_{k}\right] = \int_{-\infty}^{x_{k}} \cdots \int_{-\infty}^{x_{1}} f\left(t_{1}, \cdots, t_{k}\right) dt_{1} \cdots dt_{k}$$

for all  $x_1,\cdots,x_k$ . Then  $f\left(x_1,\cdots,x_k\right)$  is the joint density function of  $(X_1,\cdots,X_k)$  (provided that  $f\left(x_1,\cdots,x_k\right)\geq 0$ ).

## **Marginal distributions**

#### **Theorem**

(a) Suppose that  $X=(X_1,\cdots,X_k)$  has joint frequency function f(x). For  $\ell < k$ , the joint frequency function of  $(X_1,\cdots,X_\ell)$  is

$$g(x_1, \dots, x_\ell) = \sum_{x_{\ell+1}, \dots, x_k} f(x_1, \dots, x_k)$$

(b) Suppose that  $X = (X_1, \dots, X_k)$  has joint density function f(x). For  $\ell < k$ , the joint density function of  $(X_1, \dots, X_\ell)$  is

$$g(x_1, \dots, x_\ell) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_k) dx_{\ell+1} \dots dx_k$$

### Uniform distribution on a disk

Suppose that X and Y are continuous random variables with joint density function

$$f(x,y) = \frac{1}{\pi}$$
 for  $x^2 + y^2 \le 1$ 

X and Y thus have a Uniform distribution on a disk of radius 1 centered at the origin.

- Determine  $P(X \le u)$  for  $-1 \le u \le 1$ .
- Determine the probability density function (pdf) of X

## Independent random variables

#### **Definition**

Let  $X_1, \cdots, X_k$  be random variables defined on the same sample space.  $X_1, \cdots, X_k$  are said to be independent if the events  $[a_1 < X_1 \le b_1]$ ,  $[a_2 < X_2 \le b_2]$ ,  $\cdots$ ,  $[a_k < X_k \le b_k]$  are independent for all  $a_i < b_i$ ,  $i = 1, \cdots, k$ .

An infinite collection  $X_1, X_2, \cdots$  of random variables are independent if every finite collection of random variables is independent.

## Joint density of independent random variables

#### **Theorem**

If  $X_1, \dots, X_k$  are independent and have joint density (or frequency) function  $f(x_1, \dots, x_k)$  then

$$f(x_1, \dots, x_k) = \prod_{i=1}^k f_i(x_i)$$

where  $f_i(x_i)$  is the marginal density (frequency) function of  $X_i$ .

Conversely, if the joint density (frequency) function is the product of marginal density (frequency) functions then  $X_1, \dots, X_k$  are independent.

#### Minimum and Maximum of Uniform random variables

Suppose that  $X_1, \dots, X_n$  are i.i.d. continuous random variables with common (marginal) density f(x) and distribution function F(x). Given  $X_1, \dots, X_n$ , we can define two new random variables

$$U = \min(X_1, \dots, X_n)$$
 and  $V = \max(X_1, \dots, X_n)$ 

- (a) Determine the marginal densities of U and V.
- (b) Determine the joint density of (U, V)

#### **Transformation**

Suppose that  $X=(X_1,\cdots,X_k)$  is a random vector with some joint distribution. Define new random variables  $Y_i=h_i(X)(i=1,\cdots,k)$  where  $h_1,\cdots,h_k$  are real-valued functions. We would like to determine

- the (marginal) distribution of  $Y_i$ , and
- the joint distribution of  $Y = (Y_1, \dots, Y_k)$ .

## Change of Variables formulae

Objective: find the joint density of  $Y=(Y_1,\cdots,Y_k)$  where  $Y_i=h_i\left(X_1,\cdots,X_k\right)$   $(i=1,\cdots,k)$  and  $X=(X_1,\cdots,X_k)$  has a joint density  $f_X$ .

We start by defining a vector-valued function h whose elements are the functions  $h_1, \dots, h_k$ :

$$\boldsymbol{h}(\boldsymbol{x}) = \begin{pmatrix} h_1(x_1, \dots, x_k) \\ h_2(x_1, \dots, x_k) \\ \vdots \\ h_k(x_1, \dots, x_k) \end{pmatrix}$$

#### **Jacobian**

- Assume ( that h is a one-to-one function with inverse  $h^{-1}$  that is,  $(h^{-1}(h(x)) = x)$ .
- Define the Jacobian matrix of h to be a  $k \times k$  whose i-th row and j-th column element is

$$\frac{\partial}{\partial x_i} h_i \left( x_1, \cdots, x_k \right)$$

with the Jacobian of h,  $J_h(x_1, \dots, x_k)$ , defined to be the determinant of this matrix.

## Change-of-Variable

#### **Theorem**

Suppose that  $P(X \in S) = 1$  for some open set  $S \subset \mathbb{R}^k$ . If

- (a) h has continuous partial derivatives on S,
- (b) h is one-to-one on S,
- (c)  $J_{\boldsymbol{h}}(\boldsymbol{x}) \neq 0$  for  $\boldsymbol{x} \in S$

then  $(Y_1, \dots, Y_k)$  has joint density function

$$f_Y(\mathbf{y}) = \frac{f_X\left(\mathbf{h}^{-1}(\mathbf{y})\right)}{|J_h\left(\mathbf{h}^{-1}(\mathbf{y})\right)|}$$
$$= f_X\left(\mathbf{h}^{-1}(\mathbf{y})\right)|J_{h^{-1}}(\mathbf{y})|$$

for  $y \in h(S)$ .  $(J_{h^{-1}}$  is the Jacobian of  $h^{-1}$ .)

## Sum of independent random variables

Suppose that  $X_1, X_2$  are random variables with joint frequency function  $f_X(x_1, x_2)$  and let  $Y = X_1 + X_2$ .

- (a) Suppose that  $X_1, X_2$  are discrete; Determine the joint frequency function of Y.
- (b) Suppose that  $X_1, X_2$  are continuous with joint density  $f_X(x_1, x_2)$ . Determine the density function of Y.

## Gamma distribution

Suppose that  $X_1, X_2$  are independent Gamma random variables with common scale parameters:

$$X_1 \sim \operatorname{Gamma}(\alpha, \lambda)$$
 and  $X_2 \sim \operatorname{Gamma}(\beta, \lambda)$ 

Define

$$Y_1 = X_1 + X_2$$
$$Y_2 = \frac{X_1}{X_1 + X_2}$$

#### Show that

- (a)  $Y_1$  is independent of  $Y_2$ ;
- (b)  $Y_1$  has a Gamma distribution with shape parameter  $\alpha + \beta$  and scale parameter  $\lambda$ ;
- (c)  $Y_2$  has a Beta distribution with parameters  $\alpha$  and  $\beta$  ( $Y_2 \sim \text{Beta}(\alpha, \beta)$ ).

#### **Extensions**

The change-of-variable formula can be extended to the case where the transformation  ${\boldsymbol h}$  is not one-to-one. Suppose that  $P[{\boldsymbol X} \in S] = 1$  for some open set and that S is a disjoint union of open sets  $S_1, \cdots, S_m$  where  ${\boldsymbol h}$  is one-to-one on each of the  $S_j$  's (with inverse  $h_j^{-1}$  on  $S_j$ ).

The joint density of  $(Y_1, \dots, Y_k)$  is

$$f_Y(\boldsymbol{y}) = \sum_{j=1}^m f_X\left(h_j^{-1}(\boldsymbol{y})\right) \left| J_{h_j^{-1}}(\boldsymbol{y}) \right| \mathbb{1}_{S_j}\left(h_j^{-1}(\boldsymbol{y})\right).$$

where  $J_{h_j^{-1}}$  is the Jacobian of  $h_j^{-1}$ .

#### **Order statistics**

Suppose that  $X_1, \cdots, X_n$  are i.i.d. random variables with density function f(x). Reorder the  $X_i$  's so that  $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ ; these latter random variables are called the order statistics of  $X_1, \cdots, X_n$ .

· Determine the distribution of order statistics.

## **Expectation**

## **Expectation**

If  $X = (X_1, \cdots, X_k)$  has a joint density or frequency function; more precisely, we can define

$$E[h(\boldsymbol{X})] = \sum_{\boldsymbol{x}} h(\boldsymbol{x}) f(\boldsymbol{x})$$

if X has joint frequency function f(x) and

$$E[h(\boldsymbol{X})] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(\boldsymbol{x}) f(\boldsymbol{x}) dx_1 \cdots dx_k$$

if X has joint density function f(x).

## **Expectation**

Suppose that  $X_1, \dots, X_n$  are random variables defined on some sample space and let  $Y = h(X_1, \dots, X_k)$  for some real-valued function h. The expected value of Y to be

$$E(Y) = \int_0^\infty P(Y > y) dy - \int_{-\infty}^0 P(Y \le y) dy$$

This formula implies that we need to first determine the distribution function of Y in order to evaluate E(Y).

## Elementary properties of the expectation

#### **Proposition**

Suppose that  $X_1, \dots, X_k$  are random variables with finite expected values.

(a) If  $X_1, \dots, X_k$  are defined on the same sample space then

$$E(X_1 + \dots + X_k) = \sum_{i=1}^k E(X_i)$$

(b) If  $X_1, \dots, X_k$  are independent random variables then

$$E\left(\prod_{i=1}^{k} X_{i}\right) = \prod_{i=1}^{k} E\left(X_{i}\right)$$

# Moment generating function of a sum of independent random variables

Suppose that  $X_1, \cdots, X_n$  are independent random variables with moment generating functions  $m_1(t), \cdots, m_n(t)$ , respectively. Define  $S = X_1 + \cdots + X_n$ .

- Compute the MGF of S.
- Assume that  $X_1,\dots,X_n$  are Gaussian,  $E(X_i)=\mu_i$  and  ${\rm Var}(X_i)=\sigma_i^2.$  What is the distribution of S

#### Covariance

#### **Definition**

Suppose X and Y are random variables with  $E\left(X^2\right)$  and  $E\left(Y^2\right)$  both finite and let  $\mu_X=E(X)$  and  $\mu_Y=E(Y)$ . The covariance between X and Y is

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$

1. For any constants a, b, c, and d,

$$Cov(aX + b, cY + d) = ac Cov(X, Y)$$

2. If X and Y are independent random variables (with E(X) and E(Y) finite) then  $\mathrm{Cov}(X,Y)=0$ 

## Independence and correlation

The converse to 2 is not true. In fact, it is simple to find an example where Y = g(X) but Cov(X, Y) = 0.

Suppose that X has a Uniform distribution on the interval [-1,1] and let Y=-1 if |X|<1/2 and Y=1 if  $|X|\geq 1/2$ .

• Show that Cov(X, Y) = 0.

## **Elementary property**

### **Proposition**

Suppose that  $X_1, \dots, X_n$  are random variables with  $E\left(X_i^2\right) < \infty$  for all i. Then

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right) + 2 \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

## Sampling with replacement

Suppose we are sampling without replacement from a finite population consisting of N items  $a_1, \cdots, a_N$ . Let  $X_i$  denote the result of the i-th draw; we then have

$$P\left(X_i=a_k\right)=\frac{1}{N} \quad \text{ and } \quad P\left(X_i=a_k,X_j=a_\ell\right)=\frac{1}{N(N-1)}$$

where  $1 \le i, j, k, \ell \le N, i \ne j$  and  $k \ne \ell$ . Suppose we define

$$S_n = \sum_{i=1}^n X_i$$

where  $n \leq N$ .

- Determine the mean and variance of  $S_n$  (Hint: you may use the  $Var(S_N)$ ) ?
- · What happens if we sample with replacement?

#### Covariance matrix

Given random variables  $X_1, \dots, X_n$ , it is often convenient to represent the variances and covariances of the  $X_i$  's via a  $n \times n$  matrix.

Set  $X = (X_1, \cdots, X_n)^T$  (a column vector); then we define the variance-covariance matrix (or covariance matrix) of X to be an  $n \times n$  matrix  $C = \operatorname{Cov}(X)$  whose diagonal elements are  $C_{ii} = \operatorname{Var}(X_i)$   $(i = 1, \cdots, n)$  and whose off-diagonal elements are  $C_{ij} = \operatorname{Cov}(X_i, X_j)$   $(i \neq j)$ .

### **Covariance matrix**

Variance-covariance matrices can be manipulated for linear transformations of X: If Y = BX + a for some  $m \times n$  matrix B and vector a of length m then

$$Cov(\boldsymbol{Y}) = B Cov(\boldsymbol{X})B^T$$

Likewise, if we define the mean vector of X to be

$$E(\mathbf{X}) = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_n) \end{pmatrix}$$

then E(Y) = BE(X) + a.

#### Correlation

#### **Definition**

Suppose that X and Y are random variables where both  $E\left(X^2\right)$  and  $E\left(Y^2\right)$  are finite. Then the correlation between X and Y is

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{[\operatorname{Var}(X)\operatorname{Var}(Y)]^{1/2}}$$

The advantage of the correlation is the fact that it is essentially invariant to linear transformations (unlike covariance). That is, if U = aX + b and V = cY + d then

$$Corr(U, V) = Corr(X, Y)$$

if a and c have the same sign; if a and c have different signs then Corr(U,V) = -Corr(X,Y).

## Property of the correlation

#### **Proposition**

Suppose that X and Y are random variables where both  $E\left(X^2\right)$  and  $E\left(Y^2\right)$  are finite. Then

- (a)  $-1 \le Corr(X, Y) \le 1$ ;
- (b) Corr(X,Y) = 1 if, and only if, Y = aX + b for some a > 0; Corr(X,Y) = -1 if, and only if, Y = aX + b for some a < 0.

## **Optimal linear predictor**

#### **Proposition**

Suppose that X and Y are random variables where both  $E\left(X^2\right)$  and  $E\left(Y^2\right)$  are finite and define

$$g(a,b) = E\left[ (Y - a - bX)^2 \right]$$

Then g(a,b) is minimized at

$$b_0 = \frac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(X)} = \mathrm{Corr}(X,Y) \left(\frac{\mathrm{Var}(Y)}{\mathrm{Var}(X)}\right)^{1/2}$$
 and  $a_0 = E(Y) - b_0 E(X)$ 

with 
$$g(a_0, b_0) = Var(Y) (1 - Corr^2(X, Y)).$$

**Conditional Distribution** 

#### **Conditional distribution**

We are often interested in the probability distribution of a random variable (or random variables) given knowledge of some event A.

If the conditioning event A has positive probability then we can define conditional distributions, conditional density functions (marginal and joint) and conditional frequency functions using the definition of conditional probability, for example,

$$P(X_1 \le x_1, \dots, X_k \le x_k \mid A) = \frac{P(X_1 \le x_1, \dots, X_k \le x_k, A)}{P(A)}$$

#### **Conditional distribution**

In the case of discrete random variables, it is straightforward to define the conditional frequency function of (say)  $X_1, \dots, X_j$  given the event  $X_{j+1} = x_{j+1}, \dots, X_k = x_k$  as

$$f(x_1, \dots, x_j \mid x_{j+1}, \dots, x_k)$$

$$= P(X_1 = x_1, \dots, X_j = x_j \mid X_{j+1} = x_{j+1}, \dots, X_k = x_k)$$

$$= \frac{P(X_1 = x_1, \dots, X_j = x_j, X_{j+1} = x_{j+1}, \dots, X_k = x_k)}{P(X_{j+1} = x_{j+1}, \dots, X_k = x_k)}$$

which is simply the joint frequency function of  $X_1, \dots, X_k$  divided by the joint frequency function of  $X_{j+1}, \dots, X_k$ .

## Capture-recapture models

Mark/recapture experiments are used to estimate the size of animal populations. Suppose that the size of the population is N (unknown).

- Initially,  $m_0$  members of the populations are captured and tagged for future identification before being returned to the population.
- Subsequently, a similar process is repeated k times:  $m_i$  members are captured at stage i and we define a random variable  $X_i$  to be the number of captured members who were tagged previously; the  $m_i-X_i$  non-tagged members are tagged and all  $m_i$  members are returned to the population.
- Derive the joint distribution of  $(X_1, \dots, X_k)$ .

### **Conditional distribution**

#### **Definition**

Suppose that  $(X_1,\cdots,X_k)$  has the joint density function  $g\left(x_1,\cdots,x_k\right)$ . Then the conditional density function of  $X_1,\cdots,X_j$  given  $X_{j+1}=x_{j+1},\cdots,X_k=x_k$  is defined to be

$$f(x_1, \dots, x_j \mid x_{j+1}, \dots, x_k) = \frac{g(x_1, \dots, x_j, x_{j+1}, \dots, x_k)}{h(x_{j+1}, \dots, x_k)}$$

provided that  $h(x_{j+1},\cdots,x_k)$ , the joint density of  $X_{j+1},\cdots,X_k$ , is strictly positive.

## **Conditional expected value**

#### **Definition**

Given an event A with P(A)>0 and a random variable X with  $E[|X|]<\infty$ , we define

$$E(X \mid A) = \int_0^\infty P(X > x \mid A) dx - \int_{-\infty}^0 P(X < x \mid A) dx$$

to be the conditional expected value of X given A.

## Law of total probability

#### **Theorem**

Suppose that  $A_1,A_2,\cdots$  are disjoint events with  $P\left(A_k\right)>0$  for all k and  $\bigcup_{k=1}^{\infty}A_k=\Omega$ . Then if  $E[|X|]<\infty$ ,

$$E(X) = \sum_{k=1}^{\infty} E(X \mid A_k) P(A_k)$$

## **Conditional expectation**

- Given a continuous random vector X, we would like to define  $E(Y \mid X = x)$  for a random variable Y with  $E[|Y|] < \infty$ .
- Since the event  $[{m X}={m x}]$  has probability 0 , this is somewhat delicate from a technical point of view, although if Y has a conditional density function given  ${m X}={m x}, f(y\mid {m x})$  then we can define

$$E(Y \mid \mathbf{X} = \mathbf{x}) = \int_{-\infty}^{\infty} y f(y \mid \mathbf{x}) dy$$

• We can obtain similar expressions for  $E[g(\boldsymbol{Y}) \mid \boldsymbol{X} = \boldsymbol{x}]$  provided that we can define the conditional distribution of  $\boldsymbol{Y}$  given  $\boldsymbol{X} = \boldsymbol{x}$  in a satisfactory way.

## Elementary property of conditional expectation

#### **Proposition**

Suppose that X and Y are random vectors. Then

(a) if  $E[|g_1(Y)|]$  and  $E[|g_2(Y)|]$  are finite,

$$E [ag_1(\mathbf{Y}) + bg_2(\mathbf{Y}) \mid \mathbf{X} = \mathbf{x}]$$
  
=  $aE [g_1(\mathbf{Y}) \mid \mathbf{X} = \mathbf{x}] + bE [g_2(\mathbf{Y}) \mid \mathbf{X} = \mathbf{x}]$ 

- (b)  $E[g_1(X)g_2(Y) \mid X=x] = g_1(x)E[g_2(Y) \mid X=x]$  if  $E[|g_2(Y)|]$  is finite;
- (c) If  $h(x) = E[g(Y) \mid X = x]$  then E[h(X)] = E[g(Y)] if E[|g(Y)|] is finite.

## Variance decomposition

#### **Theorem**

Suppose that Y is a random variable with finite variance. Then

$$Var(Y) = E[Var(Y \mid \boldsymbol{X})] + Var[E(Y \mid \boldsymbol{X})]$$

where 
$$Var(Y \mid \boldsymbol{X}) = E[(Y - E(Y \mid \boldsymbol{X}))^2 \mid \boldsymbol{X}].$$