SDS7102: Linear Models and Extensions

Introduction

Qiang Sun, Ph.D. <qiang.sun@mbzuai.ac.ae>

August 19, 2025

MBZUAI

Basic Information

Welcome to SDS7102

Instructors

Qiang Sun <qiang.sun@mbzuai.ac.ae>
Eric Moulines <eric.moulines@mbzuai.ac.ae>

Office hours: TBD

Teaching Assistant:

Ding Bai <ding.bai@mbzuai.ac.ae>

· Course website: TBD

Basic Information

- Syllabus:
 - Available at course website/moodle.
- · Textbook:
 - Lectures notes.
 - [PD] Peng Ding (2025). Linear Model and Extensions. Chapman & Hall.
 - Freely available at https://arxiv.org/pdf/2401.00649v2.
- · Programming language:
 - Python: https://www.python.org/.

Evaluation

Evaluation

- Lecture attendance: 10%.
- Lab attendance: 10%.
- Assignments: 20%.
- Midterm Exam: 20%.
- Final Exam: 40%.

Homework

- 4 assignments.
- You are encouraged to discuss them with anyone.
- DO NOT copy homework!

Exams

 1 midterm and 1 final exam, roughly at week 8 and week 16, respectively.

Course Overview

- In the first week, we will review some basic knowledge, and introduce Python.
- Topics in linear models: Multivariate liear regression, statistical inference, model fitting and checking, model misspecfication, overfitting and explicit regularization, overparameterization and implicit regularization, genearalized linear models.
- Use Python for model fitting, simulation and numerical optimization.

Linear Models

- In many research questions, we want to analyze the relationship between the response variable Y and some predictors X_1, \ldots, X_p . Examples:
 - Model height with age and gender
 - Model the risk of lung cancer with smoking status and biomarkers
- If we assume that the relationship is linear, we usually write:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

· Is this the correct relationship?

"All models are wrong, but some are useful."

The heights of parents and children (Galton, 1886)

- · Why linear models?
 - Simple, can be easily interpreted
 - Approximate the truth well in practice
 - The parameters can be easily solved, and have good statistical properties
- Linear models can handle nonlinearity by incorporating nonlinear terms of covariates.
 - · Linear: Linear in parameters, not linear in covariates.
- Linear models serve as a building block for more complicated models.

Extensions of linear models

- *Y* is binary, *X* is mixed type: logistic regression.
- Y is categorical without ordering: multinomial logistic regression (softmax head/regression).
- *Y* is categorial with ordering: proportional odds regression.
- Y represents counts: Poisson regression/negative-binomial regression/zero-inflated regression.
- Y is multivariate and correlated: generalized estimating equations (GEE).
- Y represents time-to-event: Cox proportional hazards regression or survival analysis more generally.

• . . .

When linear models are not enough?

- Linear models offer insights into more complicated models, such as neural networks.
- For example, the double-descent phenomenon—originally observed empirically in deep learning (Belkin et al., 2019)—can be rigorously examined and proved within the framework of linear models (Hastie et al., 2022).

The double-descent phenomenon

Belkin et al. (2019)

The double-descent phenomenon in linear regression

Hastie et al. (2022)

Only in rare cases,

the insights gained from linear models do not apply to more complicated models!

A brief history of linear regression

- · Statistics originated from genetic studies
- Galton (Natural Inheritance, 1894) studied the diameters of mother seeds and daughter seeds, and observed a slope of 0.33 of the regression line between the two measurements (daughter seed $\sim 0.33 \times$ mother seed)).
- This indicates that extremely large or small mother seeds typically generated substantially less extreme daughter seeds.
- The original data can be found here.

Francis Galton (1822 – 1911)

Karl Pearson (1857 - 1936)

A brief history of linear regression

- A formal definition of regression and correlation was developed by Karl Pearson (1896):
- The Pearson correlation is defined as:

$$\rho_{X,Y} = \operatorname{Corr}(X,Y) = \frac{E\big[(X - E(X))(Y - E(Y))\big]}{\sigma_X \sigma_Y}.$$

• For a simple linear regression (one predictor), the slope β is

$$\beta = \operatorname{Corr}(X, Y) \frac{\sigma_Y}{\sigma_X} = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}.$$

· Multiple linear regressions are slightly more difficult.

Basic Requirements

- This course assumes basic mathematical and statistical background.
- <u>Linear Algebra</u>: matrix operations, linear space, operations, properties, etc.
- <u>Calculus</u>: double integration, etc.
- <u>Statistical concepts</u>: likelihood, parameter estimations, hypothesis testing, confidence intervals, central limit theorem, etc.
- Computational skills: Python centered, simulations, etc.

• To estimate the mean μ_x of a random variable X, one obtained a 95% confidence interval (22.3, 25.6).

- To estimate the mean μ_x of a random variable X, one obtained a 95% confidence interval (22.3, 25.6).
- This means (True / False ?):
 - μ_x must be between 22.3 and 25.6.

- To estimate the mean μ_x of a random variable X, one obtained a 95% confidence interval (22.3, 25.6).
- This means (True / False ?):
 - μ_x must be between 22.3 and 25.6.
 - If I randomly draw another X, it has 95% chance to fall in (22.3, 25.6).

- To estimate the mean μ_x of a random variable X, one obtained a 95% confidence interval (22.3, 25.6).
- This means (True / False ?):
 - μ_x must be between 22.3 and 25.6.
 - If I randomly draw another X, it has 95% chance to fall in (22.3, 25.6).
 - The probability that μ_x falls outside the interval (22.3, 25.6) is 5%.

- To estimate the mean μ_x of a random variable X, one obtained a 95% confidence interval (22.3, 25.6).
- This means (True / False ?):
 - μ_x must be between 22.3 and 25.6.
 - If I randomly draw another X, it has 95% chance to fall in (22.3, 25.6).
 - The probability that μ_x falls outside the interval (22.3, 25.6) is 5%.
- · Where does that 95% come from?

- To estimate the mean μ_x of a random variable X, one obtained a 95% confidence interval (22.3, 25.6).
- This means (True / False ?):
 - μ_x must be between 22.3 and 25.6.
 - If I randomly draw another X, it has 95% chance to fall in (22.3, 25.6).
 - The probability that μ_x falls outside the interval (22.3, 25.6) is 5%.
- · Where does that 95% come from?
- The concept of a random variable (the CI) and its instance (the interval (22.3, 25.6)).

Some basics of the Normal

distribution

Some distributions:

• Normal distribution $\mathcal{N}(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Student's t-distribution with d.f. r:

$$f(x) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{\pi r} \Gamma(\frac{r}{2})} \left(1 + \frac{x^2}{r}\right)^{-\frac{r+1}{2}}$$

• F-distribution with d.f. d_1 and d_2 :

$$f(x) = \frac{1}{B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1 + \frac{d_1}{d_2}x\right)^{-\frac{d_1 + d_2}{2}}$$

Relationships among distributions

•
$$X \sim \mathcal{N}(0,1) \longrightarrow X^2 \sim \chi^2(1)$$

•
$$Z \sim \mathcal{N}(0,1), X \sim \chi^2(r) \longrightarrow \frac{Z}{\sqrt{X/r}} \sim t(r)$$

•
$$X_1 \sim \chi^2(a), X_2 \sim \chi^2(b) \longrightarrow \frac{X_1/a}{X_2/b} \sim F(a,b)$$

! Review the properties of Normal, χ^2 , t, and F.

- Normal (Gaussian) distribution is the most frequently used distribution in statistics
- By the central limit theory, sample means will converge to Gaussian as sample size increases
- In many cases, we will concern about two or many normally distributed random variables
- Lets consider two random variables X and Y that are jointly normally distributed with density function

$$\begin{split} & = \frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1-\rho^{2}}} \times \\ & = \exp\left\{-\frac{1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{x})^{2}}{\sigma_{x}^{2}} + \frac{(y-\mu_{y})^{2}}{\sigma_{y}^{2}} - \frac{2\rho(x-\mu_{x})(y-\mu_{y})}{\sigma_{x}\sigma_{y}} \right] \right\} \end{split}$$

where μ_x and μ_y are the means, σ_x and σ_y are the standard deviations, and ρ is the correlation coefficient.

- The marginal pdfs of X and Y are also Gaussian: $X \sim \mathcal{N}(\mu_x, \sigma_x^2), Y \sim \mathcal{N}(\mu_y, \sigma_y^2).$
- ? How to derive the marginal from the joint?
- What about the conditional distribution of Y given X?
- Example: Suppose that a large class took two exams. The exam scores X (Exam 1) and Y (Exam 2) follow a bivariate normal distribution with $\mu_x=70,\,\mu_y=60,\,\sigma_x=10,\,\sigma_y=15,\,$ and $\rho=0.6.$ A student is selected at random. Suppose we know that the student got a 80 on Exam 1, what is the probability that his/her score on Exam 2 is over 75?

• The question is essentially finding P(Y > 75|X = 80), given that

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 70 \\ 60 \end{bmatrix}, \begin{bmatrix} 10^2 & 0.6 \cdot 10 \cdot 15 \\ 0.6 \cdot 10 \cdot 15 & 15^2 \end{bmatrix} \right)$$

• We need to find the conditional density f(y|x), which is defined as

$$f(y|x) = \frac{f(x,y)}{f(x)}$$

Some derivation is required

$$\begin{split} & \frac{f(x,y)}{f(x)} \\ & = \frac{\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right] + \frac{(x-\mu_x)^2}{2\sigma_x^2}\right\}}{\sqrt{2\pi}\sigma_y\sqrt{1-\rho^2}} \\ & = \frac{\exp\left\{-\frac{1}{2\sigma_y^2(1-\rho^2)}\left[\rho^2\frac{\sigma_y^2}{\sigma_x^2}(x-\mu_x)^2 + (y-\mu_y)^2 - 2\rho\frac{\sigma_y}{\sigma_x}(x-\mu_x)(y-\mu_y)\right]\right\}}{\sqrt{2\pi}\sigma_y\sqrt{1-\rho^2}} \\ & = \frac{\exp\left\{-\frac{1}{2\sigma_y^2(1-\rho^2)}\left[y-\mu_y-\rho\frac{\sigma_y}{\sigma_x}(x-\mu_x)\right]^2\right\}}{\sqrt{2\pi}\sigma_y\sqrt{1-\rho^2}} \end{split}$$

• Hence, the conditional distribution of Y|X=x is

$$\mathcal{N}\left(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x), \sigma_y^2(1 - \rho^2)\right)$$

Example:

• Hence, given that X=80, the conditional distribution of Y is $\mathcal{N}(69,12^2)$, and

$$P(Y > 75|X = 80) = P(\mathcal{N}(69, 12^2) > 75) \approx 0.3085.$$

- Following the same assumption on the joint distribution of X (Exam 1) and Y (Exam 2), with $\mu_x=70$, $\mu_y=60$, $\sigma_x=10$, $\sigma_y=15$, and $\rho=0.6$, calculate
 - Suppose we know that a randomly sampled student got 66 on Exam 1, what is the probability that the Exam 2 score is over 75?
 - Suppose we know that a randomly sampled student got 70 on Exam 2, what is the probability that the Exam 1 score is over 80?

- The sum of two random normal variables are also normally distributed.
- Suppose that $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$, $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$ and the correlation coefficient between X and Y is ρ , then the sum

$$X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2 + 2\rho\sigma_x\sigma_y)$$

- From the previous example, what is the probably that a randomly selected student has a combined score over 150, i.e., P(X+Y>150)?
- Find P(2X + 3Y > 350).
- Find that the student did better on Exam 1 than on Exam 2, i.e., P(X Y > 0).

- We usually represent a multivariate normal (MVN) distribution in a matrix form:
- Let $X = (X_1, X_2, \dots, X_p)^\mathsf{T}$ be a p-dimensional random vector that follows the distribution $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is symmetric and positive-definite.
- The pdf of X is

$$\frac{1}{(2\pi)^{p/2}|\mathbf{\Sigma}|^{1/2}}\exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

• Let Z be a q-dimensional vector of linear combinations of X such that $Z=\mathbf{A}_{q\times p}X+\mathbf{b}_{q\times 1}$, then we have Z follows a MVN distribution:

$$Z \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}})$$

• A special case: if $Z = \Sigma^{-1/2}(X - \mu)$, then entries in Z follow iid normal:

- Conditional distribution of multivariate normal is also frequently used
- Let the random vector $(X^{\mathsf{T}}, Z^{\mathsf{T}})^{\mathsf{T}}$ be jointly distributed as

$$\begin{pmatrix} X \\ Z \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_z \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xz} \\ \boldsymbol{\Sigma}_{xz}^\mathsf{T} & \boldsymbol{\Sigma}_{zz} \end{bmatrix} \right)$$

• The the conditional distribution of X|Z=z is

$$X|Z=z \sim \mathcal{N}\left(\boldsymbol{\mu}_x + \boldsymbol{\Sigma}_{xz}\boldsymbol{\Sigma}_{zz}^{-1}(z-\boldsymbol{\mu}_z), \boldsymbol{\Sigma}_{xx} - \boldsymbol{\Sigma}_{xz}\boldsymbol{\Sigma}_{zz}^{-1}\boldsymbol{\Sigma}_{xz}^{\mathsf{T}}\right)$$

· Example: Suppose

$$X \sim \mathcal{N}_3 \left(\begin{bmatrix} 5\\3\\7 \end{bmatrix}, \begin{bmatrix} 4 & -1 & 0\\-1 & 4 & 2\\0 & 2 & 9 \end{bmatrix} \right)$$

- Find $P(X_1 > 8)$
- Find $P(X_1 > 8 | X_2 = 1, X_3 = 10)$
- Find $P(4X_1 3X_2 + 5X_3 < 63)$
- Sometimes using Python to calculate these will be a lot easier.

An introduction to Python

Install and setup Python, with VSCode

- Python is a free and open-source software for computing.
- Python programming is usually self-explanatory, intuitive, and popular.
- VSCode is an integrated development environment (IDE) for Python.

PyCharm is another popular option.

- There are a lot of online guides available.
- We will go over some basics of the Python programming language.

Example

- Use Python on the previous example of the MVN distribution
- $P(X_1 > 8 | X_2 = 1, X_3 = 10)$

```
import numpy as np
   2 from scipy.stats import norm
   4 # Define the mean vector and covariance matrix
   5 mu = np.arrav([5, 3, 7])
   6 Sigma = np.array([[4, -1, 0]],
                       [-1, 4, 2],
                        [0. 2. 911)
   8
     # Conditional mean
  11 Mean = mu[0] + Sigma[0,1:] @ np.linalg.inv(Sigma[1:,1:]) @ (np.array([1, 10]) - mu[1:])
  13 # Conditional variance
     Var = Sigma[0,0] - Sigma[0,1:] @ np.linalq.inv(Sigma[1:,1:]) @ Sigma[1:,0]
  16 # Compute the probability P(X1 > 8 \mid X2 = 1, X3 = 10)
      p = norm.sf(8, loc = Mean, scale = Var)
  19 print("P(X1 > 8 | X2 = 1, X3 = 10):", f"{p:.7f}")
 ✓ 0.0s
P(X1 > 8 \mid X2 = 1, X3 = 10): 0.2725755
```

Example

• $P(4X_1 - 3X_2 + 5X_3 < 63)$

```
1 # mean vector and covariance matrix (same as before)
   2 mu = np.array([5, 3, 7])
   3 Sigma = np.array([[4, -1, 0]],
                      [-1, 4, 2],
                     [0, 2, 9]])
   7 # define the linear combination
   8 = np.array([4, -3, 5])
  10 # mean and variance of a'X
  11 Mean_aX = mu @ a
  12 Var_aX = a @ Sigma @ a
  14 # probability P(a'X <= 63)
  15 p = norm.cdf(63, loc=Mean aX, scale=np.sgrt(Var aX))
  17 print("P(a'X <= 63):", f"{p:.7f}")
✓ 0.0s
                                                                                       Python
P(a'X <= 63): 0.8413447
```