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Basic Information

Welcome to SDS7102

• Instructors
Qiang Sun <qiang.sun@mbzuai.ac.ae>

Eric Moulines <eric.moulines@mbzuai.ac.ae>

Office hours: TBD

• Teaching Assistant:
Ding Bai <ding.bai@mbzuai.ac.ae>

• Course website: TBD
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Basic Information

• Syllabus:
– Available at course website/moodle.

• Textbook:
– Lectures notes.
– [PD] Peng Ding (2025). Linear Model and Extensions. Chapman &

Hall.
– Freely available at https://arxiv.org/pdf/2401.00649v2.

• Programming language:
– Python: https://www.python.org/.
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Evaluation

• Evaluation
– Lecture attendance: 10%.
– Lab attendance: 10%.
– Assignments: 20%.
– Midterm Exam: 20%.
– Final Exam: 40%.

• Homework
– 4 assignments.
– You are encouraged to discuss them with anyone.
– DO NOT copy homework!

• Exams
– 1 midterm and 1 final exam, roughly at week 8 and week 16,

respectively.
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Course Overview

• In the first week, we will review some basic knowledge, and
introduce Python.

• Topics in linear models: Multivariate liear regression, statistical
inference, model fitting and checking, model misspecfication,
overfitting and explicit regularization, overparameterization and
implicit regularization, genearalized linear models.

• Use Python for model fitting, simulation and numerical
optimization.
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Linear Models



A linear form of relationship

• In many research questions, we want to analyze the relationship
between the response variable Y and some predictors
X1, . . . , Xp. Examples:

– Model height with age and gender
– Model the risk of lung cancer with smoking status and biomarkers

• If we assume that the relationship is linear, we usually write:

Y = β0 + β1X1 + · · ·+ βpXp + ϵ

• Is this the correct relationship?

“All models are wrong, but some are useful.”
— George Box (1919 – 2013)
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A linear form of relationship

The heights of parents and children (Galton, 1886)
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A linear form of relationship

• Why linear models?
– Simple, can be easily interpreted
– Approximate the truth well in practice
– The parameters can be easily solved, and have good statistical

properties

• Linear models can handle nonlinearity by incorporating nonlinear
terms of covariates.

• Linear: Linear in parameters, not linear in covariates.

• Linear models serve as a building block for more complicated
models.
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Extensions of linear models

• Y is binary, X is mixed type: logistic regression.

• Y is categorical without ordering: multinomial logistic regression
(softmax head/regression).

• Y is categorial with ordering: proportional odds regression.

• Y represents counts: Poisson regression/negative-binomial
regression/zero-inflated regression.

• Y is multivariate and correlated: generalized estimating
equations (GEE).

• Y represents time-to-event: Cox proportional hazards regression
or survival analysis more generally.

• . . .
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When linear models are not enough?

• Linear models offer insights into more complicated models, such
as neural networks.

• For example, the double-descent phenomenon—originally
observed empirically in deep learning (Belkin et al., 2019)—can
be rigorously examined and proved within the framework of linear
models (Hastie et al., 2022).
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The double-descent phenomenon
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The double-descent phenomenon in linear regression

Hastie et al. (2022)
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Only in rare cases,

the insights gained from linear models do not
apply to more complicated models!
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A brief history of linear regression

• Statistics originated from genetic studies

• Galton (Natural Inheritance, 1894) studied the diameters of
mother seeds and daughter seeds, and observed a slope of 0.33
of the regression line between the two measurements (daughter
seed∼ 0.33×mother seed)).

• This indicates that extremely large or small mother seeds
typically generated substantially less extreme daughter seeds.

• The original data can be found here.
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A linear form of relationship

Francis Galton (1822 – 1911) Karl Pearson (1857 – 1936)
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A brief history of linear regression

• A formal definition of regression and correlation was developed
by Karl Pearson (1896):

• The Pearson correlation is defined as:

ρX,Y = Corr(X,Y ) =
E
[
(X − E(X))(Y − E(Y ))

]
σXσY

.

• For a simple linear regression (one predictor), the slope β is

β = Corr(X,Y )
σY

σX
=

Cov(X,Y )

Var(X)
.

• Multiple linear regressions are slightly more difficult.
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Basic Requirements

• This course assumes basic mathematical and statistical
background.

• Linear Algebra: matrix operations, linear space, operations,
properties, etc.

• Calculus: double integration, etc.

• Statistical concepts: likelihood, parameter estimations,
hypothesis testing, confidence intervals, central limit theorem,
etc.

• Computational skills: Python centered, simulations, etc.
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Let’s try a statistical concept:

• To estimate the mean µx of a random variable X, one obtained a
95% confidence interval (22.3, 25.6).

• This means (True / False ?):
• µx must be between 22.3 and 25.6.

• If I randomly draw another X, it has 95% chance to fall in
(22.3, 25.6).

• The probability that µx falls outside the interval (22.3, 25.6) is 5%.

• Where does that 95% come from?

• The concept of a random variable (the CI) and its instance (the
interval (22.3, 25.6)).
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Some basics of the Normal
distribution



Some distributions:

• Normal distribution N (µ, σ2):

f(x) =
1√
2πσ

exp

{
− (x− µ)2

2σ2

}
• Student’s t-distribution with d.f. r:

f(x) =
Γ( r+1

2 )√
πr Γ( r2 )

(
1 +

x2

r

)− r+1
2

• F -distribution with d.f. d1 and d2:

f(x) =
1

B
(
d1

2 , d2

2

) (d1
d2

) d1
2

x
d1
2 −1

(
1 +

d1
d2

x

)− d1+d2
2

20/34



Relationships among distributions

• X ∼ N (0, 1) −→ X2 ∼ χ2(1)

• Z ∼ N (0, 1), X ∼ χ2(r) −→ Z√
X/r

∼ t(r)

• X1 ∼ χ2(a), X2 ∼ χ2(b) −→ X1/a
X2/b

∼ F (a, b)

! Review the properties of Normal, χ2, t, and F .
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Multivariate normal distribution

• Normal (Gaussian) distribution is the most frequently used
distribution in statistics

• By the central limit theory, sample means will converge to
Gaussian as sample size increases

• In many cases, we will concern about two or many normally
distributed random variables

• Lets consider two random variables X and Y that are jointly
normally distributed with density function

f(x, y)

=
1

2πσxσy

√
1− ρ2

×

exp

{
−

1

2(1− ρ2)

[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

−
2ρ(x− µx)(y − µy)

σxσy

]}

where µx and µy are the means, σx and σy are the standard
deviations, and ρ is the correlation coefficient.

22/34



Multivariate normal distribution
Multivariate normal distribution
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Multivariate normal distribution

• The marginal pdfs of X and Y are also Gaussian:
X ∼ N (µx, σ

2
x), Y ∼ N (µy, σ

2
y).

? How to derive the marginal from the joint?

• What about the conditional distribution of Y given X?

• Example: Suppose that a large class took two exams. The exam
scores X (Exam 1) and Y (Exam 2) follow a bivariate normal
distribution with µx = 70, µy = 60, σx = 10, σy = 15, and ρ = 0.6.
A student is selected at random. Suppose we know that the
student got a 80 on Exam 1, what is the probability that his/her
score on Exam 2 is over 75?
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Multivariate normal distribution

• The question is essentially finding P(Y > 75|X = 80), given that(
X

Y

)
∼ N

([
70

60

]
,

[
102 0.6 · 10 · 15

0.6 · 10 · 15 152

])

• We need to find the conditional density f(y|x), which is defined
as

f(y|x) = f(x, y)

f(x)

• Some derivation is required
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Multivariate normal distribution

f(x, y)

f(x)

=

exp

{
− 1

2(1−ρ2)

[
(x−µx)2

σ2
x

+
(y−µy)

2

σ2
y

− 2ρ(x−µx)(y−µy)

σxσy

]
+

(x−µx)2

2σ2
x

}
√
2πσy

√
1− ρ2

=

exp

{
− 1

2σ2
y(1−ρ2)

[
ρ2

σ2
y

σ2
x
(x− µx)2 + (y − µy)2 − 2ρ

σy

σx
(x− µx)(y − µy)

]}
√
2πσy

√
1− ρ2

=

exp

{
− 1

2σ2
y(1−ρ2)

[
y − µy − ρ

σy

σx
(x− µx)

]2}
√
2πσy

√
1− ρ2

• Hence, the conditional distribution of Y |X = x is

N
(
µy + ρ

σy

σx
(x− µx), σ

2
y(1− ρ2)

)
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Example:

• Hence, given that X = 80, the conditional distribution of Y is
N (69, 122), and

P(Y > 75|X = 80) = P(N (69, 122) > 75) ≈ 0.3085.

• Following the same assumption on the joint distribution of X
(Exam 1) and Y (Exam 2), with µx = 70, µy = 60, σx = 10,
σy = 15, and ρ = 0.6, calculate

• Suppose we know that a randomly sampled student got 66 on
Exam 1, what is the probability that the Exam 2 score is over 75?

• Suppose we know that a randomly sampled student got 70 on
Exam 2, what is the probability that the Exam 1 score is over 80?
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Multivariate normal distribution

• The sum of two random normal variables are also normally
distributed.

• Suppose that X ∼ N (µx, σ
2
x), Y ∼ N (µy, σ

2
y) and the correlation

coefficient between X and Y is ρ, then the sum

X + Y ∼ N (µx + µy, σ
2
x + σ2

y + 2ρσxσy)

• From the previous example, what is the probably that a randomly
selected student has a combined score over 150, i.e.,
P(X + Y > 150)?

• Find P(2X + 3Y > 350).

• Find that the student did better on Exam 1 than on Exam 2, i.e.,
P(X − Y > 0).
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Multivariate normal distribution

• We usually represent a multivariate normal (MVN) distribution in
a matrix form:

• Let X = (X1, X2, . . . , Xp)
T be a p-dimensional random vector

that follows the distribution Np(µ,Σ), where Σ is symmetric and
positive-definite.

• The pdf of X is

1

(2π)p/2|Σ|1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
• Let Z be a q-dimensional vector of linear combinations of X such

that Z = Aq×pX + bq×1, then we have Z follows a MVN
distribution:

Z ∼ N (Aµ+ b,AΣAT)

• A special case: if Z = Σ−1/2(X − µ), then entries in Z follow iid
normal:

Z ∼ N (0, Ip×p)
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Multivariate normal distribution

• Conditional distribution of multivariate normal is also frequently
used

• Let the random vector (XT, ZT)T be jointly distributed as(
X

Z

)
∼ N

([
µx

µz

]
,

[
Σxx Σxz

ΣT
xz Σzz

])

• The the conditional distribution of X|Z = z is

X|Z = z ∼ N
(
µx +ΣxzΣ

−1
zz (z − µz),Σxx −ΣxzΣ

−1
zz Σ

T
xz

)
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Multivariate normal distribution

• Example: Suppose

X ∼ N3


53
7

 ,

 4 −1 0

−1 4 2

0 2 9




• Find P(X1 > 8)

• Find P(X1 > 8|X2 = 1, X3 = 10)

• Find P(4X1 − 3X2 + 5X3 < 63)

• Sometimes using Python to calculate these will be a lot easier.
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An introduction to Python



Install and setup Python, with VSCode

• Python is a free and open-source software for computing.

• Python programming is usually self-explanatory, intuitive, and
popular.

• VSCode is an integrated development environment (IDE) for
Python.

PyCharm is another popular option.

• There are a lot of online guides available.

• We will go over some basics of the Python programming
language.
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Example

• Use Python on the previous example of the MVN distribution
• P(X1 > 8|X2 = 1, X3 = 10)
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Example

• P(4X1 − 3X2 + 5X3 < 63)
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