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Basic Information

Welcome to SDS7102

* Instructors
Qiang Sun <giang.sun@mbzuai.ac.ae>
Eric Moulines <eric.moulines@mbzuai.ac.ae>

Office hours: TBD

» Teaching Assistant:
Ding Bai <ding.bai@mbzuai.ac.ae>

« Course website: TBD
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Basic Information

+ Syllabus:
— Available at course website/moodle.
» Textbook:

— Lectures notes.
— [PD] Peng Ding (2025). Linear Model and Extensions. Chapman &
Hall.

— Freely available at https://arxiv.org/pdf/2401.00649v2.
» Programming language:
— Python: https://www.python.org/.
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» Evaluation

— Lecture attendance: 10%.
Lab attendance: 10%.
Assignments: 20%.
Midterm Exam: 20%.
Final Exam: 40%.

* Homework

— 4 assignments.
— You are encouraged to discuss them with anyone.
— DO NOT copy homework!

* Exams

— 1 midterm and 1 final exam, roughly at week 8 and week 16,
respectively.
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Course Overview

* In the first week, we will review some basic knowledge, and
introduce Python.

+ Topics in linear models: Multivariate liear regression, statistical
inference, model fitting and checking, model misspecfication,
overfitting and explicit regularization, overparameterization and
implicit regularization, genearalized linear models.

» Use python for model fitting, simulation and numerical
optimization.
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Linear Models



A linear form of relationship

* In many research questions, we want to analyze the relationship
between the response variable Y and some predictors
X1,...,X,. Examples:

— Model height with age and gender
— Model the risk of lung cancer with smoking status and biomarkers

* If we assume that the relationship is linear, we usually write:
Y:BO+61X1+"'+Bpo+€

* Is this the correct relationship?

“All models are wrong, but some are useful”
— George Box (1919 — 2013)
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A linear form of relationship

The heights of parents and children (Galton, 1886)
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A linear form of relationship

* Why linear models?

— Simple, can be easily interpreted

— Approximate the truth well in practice

— The parameters can be easily solved, and have good statistical
properties

* Linear models can handle nonlinearity by incorporating nonlinear
terms of covariates.

 Linear: Linear in parameters, not linear in covariates.

* Linear models serve as a building block for more complicated
models.
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Extensions of linear models

* Y is binary, X is mixed type: logistic regression.

* Y is categorical without ordering: multinomial logistic regression
(softmax head/regression).

* Y is categorial with ordering: proportional odds regression.

* Y represents counts: Poisson regression/negative-binomial
regression/zero-inflated regression.

* Y is multivariate and correlated: generalized estimating
equations (GEE).

* Y represents time-to-event: Cox proportional hazards regression
or survival analysis more generally.
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When linear models are not enough?

* Linear models offer insights into more complicated models, such
as neural networks.

» For example, the double-descent phenomenon—originally
observed empirically in deep learning (Belkin et al., 2019)—can
be rigorously examined and proved within the framework of linear
models (Hastie et al., 2022).
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The double-descent phenomenon
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The double-descent phenomenon in linear regression

Misspecified model, SNR=5
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Only in rare cases,

the insights gained from linear models do not
apply to more complicated models!
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A brief history of linear regression

« Statistics originated from genetic studies

+ Galton (Natural Inheritance, 1894) studied the diameters of
mother seeds and daughter seeds, and observed a slope of 0.33
of the regression line between the two measurements (daughter
seed~ 0.33xmother seed)).

 This indicates that extremely large or small mother seeds
typically generated substantially less extreme daughter seeds.

» The original data can be found here.
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A linear form of relationship

s

Francis Galton (1822 — 1911) Karl Pearson (1857 — 1936)
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A brief history of linear regression

+ A formal definition of regression and correlation was developed
by Karl Pearson (1896):

» The Pearson correlation is defined as:
E[(X - E(X))(Y — E(Y))]

= rr(X,Y) =
px,y = Corr(X,Y) P

 For a simple linear regression (one predictor), the slope 3 is

- o _ CBYPs )
g = Corr(X,Y) ox ~ Var(X)

» Multiple linear regressions are slightly more difficult.
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Basic Requirements

» This course assumes basic mathematical and statistical
background.

* Linear Algebra: matrix operations, linear space, operations,
properties, etc.

 Calculus: double integration, etc.

« Statistical concepts: likelihood, parameter estimations,

hypothesis testing, confidence intervals, central limit theorem,
etc.

» Computational skills: Python centered, simulations, etc.
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Let’s try a statistical concept:

+ To estimate the mean p,. of a random variable X, one obtained a
95% confidence interval (22.3,25.6).
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Let’s try a statistical concept:

+ To estimate the mean p,. of a random variable X, one obtained a
95% confidence interval (22.3,25.6).
* This means (True / False ?):

* g, must be between 22.3 and 25.6.

« If I randomly draw another X, it has 95% chance to fall in
(22.3,25.6).

« The probability that 1. falls outside the interval (22.3,25.6) is 5%.

* Where does that 95% come from?

» The concept of a random variable (the Cl) and its instance (the
interval (22.3, 25.6)).
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Some basics of the Normal
distribution




Some distributions:

+ Normal distribution NV (p, 02):

1 (z — p)?
2mo P {_ 202

« Student’s t-distribution with d.f. r:

fz) =

- i o)
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Relationships among distributions

« X ~N(0,1) —  XZ~2(1)

* Z NJ\[(O,l),X ~ Xz(r) — \/)Zﬁ Nt(r)
* X1 ~x2(a), Xa ~ X2(b)  — 37 ~ F(a,b)

I Review the properties of Normal, x2, t, and F.
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Multivariate normal distribution

» Normal (Gaussian) distribution is the most frequently used
distribution in statistics

By the central limit theory, sample means will converge to
Gaussian as sample size increases

* In many cases, we will concern about two or many normally

distributed random variables
* Lets consider two random variables X and Y that are jointly
normally distributed with density function

fz,y)
1
= @ X
2nogoyy/1 — p?

exp{g( 1 {(xw L w—m)? 2P(muz)(yuy)]}

1—p2?) o2 o2 OOy

Yy
where y,, and p, are the means, o, and o, are the standard
deviations, and p is the correlation coefficient.
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Multivariate normal distribution

P(z), 72)

0.3
0.2
0.1
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Multivariate normal distribution

» The marginal pdfs of X and Y are also Gaussian:
X ~ N(po,02), Y ~ N(py, 03).
How to derive the marginal from the joint?

-~

What about the conditional distribution of Y given X ?

» Example: Suppose that a large class took two exams. The exam
scores X (Exam 1) and Y (Exam 2) follow a bivariate normal
distribution with p,, = 70, p,, = 60, 0, = 10, o, = 15, and p = 0.6.
A student is selected at random. Suppose we know that the
student got a 80 on Exam 1, what is the probability that his/her
score on Exam 2 is over 75?
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Multivariate normal distribution

» The question is essentially finding P(Y > 75| X = 80), given that

X N 70 102 0.6-10-15
Y 60]710.6-10-15 152
» We need to find the conditional density f(y|x), which is defined
as

f(z,y)
f(z)

flylz) =

» Some derivation is required

25/34



Multivariate normal distribution

J(@,y)
f(@)
1 (e—pe)? | W—py)? _ 2p(z—pa) (y—py) (z—pg)?
exp T 2(1—p2) o2 + o2 - oxoy + 202
V2roy\/1 — p?
o2 - o,
exp {*W {p27§(z —ha)? + (Y — py)® = 202 (z — pa)(y — uy)} }
V2roy\/1 — p?
1 Oy Z

exp T 202(1-p?) [Z/ — Ky — Pg(l - #m)]
B V2roy\/1 — p?
* Hence, the conditional distribution of Y|X =z is

N (uy + p%(w — pa), 01— p2)>
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* Hence, given that X = 80, the conditional distribution of Y is
N(69,12%), and

P(Y > 75|X = 80) = P(N(69, 12%) > 75) = 0.3085.

+ Following the same assumption on the joint distribution of X
(Exam 1) and Y (Exam 2), with p, = 70, p1,, = 60, 0, = 10,
oy = 15, and p = 0.6, calculate
» Suppose we know that a randomly sampled student got 66 on
Exam 1, what is the probability that the Exam 2 score is over 75?
» Suppose we know that a randomly sampled student got 70 on
Exam 2, what is the probability that the Exam 1 score is over 807
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Multivariate normal distribution

* The sum of two random normal variables are also normally
distributed.

* Suppose that X ~ N (., 02), Y ~ N(uy,0,) and the correlation
coefficient between X and Y is p, then the sum

X+Y ~N(ps + uy#fﬁ + 0’5 + 2pogoy)

» From the previous example, what is the probably that a randomly
selected student has a combined score over 150, i.e.,
P(X+Y > 150)?

- Find P(2X + 3Y > 350).

* Find that the student did better on Exam 1 than on Exam 2, i.e.,
P(X-Y >0).
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Multivariate normal distribution

» We usually represent a multivariate normal (MVN) distribution in
a matrix form:

e Let X = (X1, Xo,. .. ,X,,)T be a p-dimensional random vector
that follows the distribution N, (p, ), where X is symmetric and
positive-definite.

* The pdf of X is

1 1 )

» Let Z be a ¢-dimensional vector of linear combinations of X such
that Z = A+, X + by x1, then we have Z follows a MVN
distribution:

Z ~N(Ap+b,AZAT)

« A special case: if Z = X~1/2(X — ), then entries in Z follow iid
normal: 29/34



Multivariate normal distribution

+ Conditional distribution of multivariate normal is also frequently
used

+ Let the random vector (X7, ZT)T be jointly distributed as

X lu’.’lﬁ ZJL Z:IZ
(Z) ~N ([Nz} |:E;z Ezz:|>
+ The the conditional distribution of X|Z = z is

X|Z=2z ~ N (ux + 8,57 e - ), Baw — znggz;)
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Multivariate normal distribution

» Example: Suppose
X ~ N3 31,|—-1 4 2

» Find P(X; > 8)

« Find P(X; > 8| X; =1, X3 = 10)

« Find P(4X; — 3X, + 5X3 < 63)

» Sometimes using Python to calculate these will be a lot easier.

31/34



An introduction to Python




Install and setup Python, with VSCode

» Python is a free and open-source software for computing.
* Python programming is usually self-explanatory, intuitive, and
popular.

* VSCode is an integrated development environment (IDE) for
Python.
PyCharm is another popular option.

» There are a lot of online guides available.

» We will go over some basics of the Python programming
language.
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Example

» Use Python on the previous example of the MVN distribution
° P(xYl > 8| X =1,X3 = 10)

import numpy as np
from scipy.stats import norm

mu = np.array([5, 3, 7])
Sigma = np.array([[4, -1,

Mean = mu[@] + Sigma[®,1:] @ np.linalg.inv(Sigma[1:,1:]} @ (np.array([1, 10]) - mu[1:])
Var = Sigma[@,0] - Sigmal@,1:] @ np.linalg.inv(Sigma[1:,1:]) @ Sigmal[1:,0]

p = norm.sf(8, loc = Mean, scale = Var)

print("P(X1 > 8 | X2 = 1, X3 = 1@8):", f"{p:.7f}")

« 0.0s Python

P(X1>8 | X2 =1, X3 = 10): 0.2725755




Example

o P(hLXl —3Xy+5X3 < ()3)

mu = np.array([5, 3, 71)

Sigma = np.array([[4, -1, @],
-1, 4, 21,
e, 2, 91])

a = np.array([4, -3, 5])

Mean_aX = mu @ a
Var_aX = a @ Sigma @ a

p = norm.cdf(63, loc=Mean_aX, scale=np.sqrt(Var_aX))

17 print("P(a'X <= 63):", '{p:.7f}")
v 0.0s Python

P(a'X <= 63): 0.8413447
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